The well-known Hermite-Hadamard inequality for convex functions is extensively studied for different kinds of integrals and derivatives. This paper investigates some of its variants for $ q-h $-integrals using properties of convex functions. Inequalities for $ q $-integrals that have been published in recent years can be extracted from the main results of this paper.
Citation: Dong Chen, Matloob Anwar, Ghulam Farid, Waseela Bibi. Integral inequalities of Hermite-Hadamard type via $ q-h $ integrals[J]. AIMS Mathematics, 2023, 8(7): 16165-16174. doi: 10.3934/math.2023826
[1] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[2] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[3] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[4] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[5] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[6] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai . Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes. AIMS Mathematics, 2021, 6(11): 11989-12010. doi: 10.3934/math.2021695 |
[7] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[8] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393 |
[10] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
The well-known Hermite-Hadamard inequality for convex functions is extensively studied for different kinds of integrals and derivatives. This paper investigates some of its variants for $ q-h $-integrals using properties of convex functions. Inequalities for $ q $-integrals that have been published in recent years can be extracted from the main results of this paper.
Inequalities are an important part of mathematical analysis, functional analysis, and optimization theory. There are several classical inequalities that are the outcomes of convex functions introduced at the start of the twentieth century. Convex functions are also frequently used in establishing new innovative results in statistics, economics, graph theory, and many other subjects of pure and applied nature.
A real valued function $ f:C \rightarrow \mathbb{R} $, where $ C $ is a convex subset of $ \mathbb{R}^n $, is called convex on $ C $ if the following inequality holds:
$ \begin{equation*} f(tx+(1-t)y)\leq tf(x)+(1-t)f(y), \end{equation*} $ |
for $ t\in [0, 1] $, $ x, y\in C $. The Hermite-Hadamard inequality is the best geometric interpretation of a convex function, it is given as follows:
$ \begin{equation} f\left(\frac{a+b}{2}\right)\leq\frac{1}{b-a}\int_{a}^{b}f(x)dx\leq\frac{f(a)+f(b)}{2}, \end{equation} $ | (1.1) |
where $ f $ is convex function on an interval $ I $ of real numbers and $ a, b\in I, \, a < b $.
The inequality $ (1.1) $ has been published in several variants by defining new classes of functions and integrals. For instance, it was studied for various kinds of convexities via fractional order derivatives/integrals in [1,2], and for its variants via quantum derivatives/integrals we refer the readers to [3,4,5].
Motivated by recent published work on the Hermite-Hadamard inequality for $ q $-calculus, our aim in this article is to give inequalities of Hermite-Hadamard type by using $ q-h $-integrals defined in [6] via properties of differentiable convex functions. These inequalities represent implicit results on $ h $-integrals, we deduce some interesting outcomes as consequences of these inequalities in the form of $ q $-integral inequalities.
In the next, we define $ q $-derivatives, $ q-h $-derivatives, $ q $-derivatives on finite intervals, $ q $-definite integrals, $ q-h $-derivatives on finite intervals and $ q-h $-definite integrals.
Definition 1. The $ q $-derivative of a continuous function $ f:I\rightarrow \mathbb{R} $ is defined by;
$ \begin{align} D_{q}f(x) = \frac{f(qx)-f(x)}{(q-1)x}, \end{align} $ | (1.2) |
where $ 0 < q < 1 $.
Definition 2. [6] The $ q-h $-derivative of a continuous function $ f:I\rightarrow \mathbb{R} $ is defined by;
$ \begin{align} &C_{h}D_{q}f(x) = \frac{_{h}d_{q}f(x)}{_{h}d_{q}x} = \frac{f(q(x+h))-f(x)}{(q-1)x+qh}, \end{align} $ | (1.3) |
where $ 0 < q < 1, \, h\in\mathbb{R} $.
For $ h = 0 $ in (1.3), we get (1.2) i.e.,
$ \begin{align*} &C_{0}D_{q}f(x) = D_{q}f(x). \end{align*} $ |
Definition 3. [4,7] The $ q_{a} $-derivative and $ q_{b} $-derivative of a continuous function $ f:I = [a, b]\rightarrow \mathbb{R} $ at $ x\in I $ are defined by;
$ \begin{align} & _{a}D_{q}f(x) = \frac{f(x)-f(qx+(1-q)a)}{(1-q)(x-a)}, \ x \neq a \end{align} $ | (1.4) |
and
$ \begin{align} & _{b}D_{q}f(x) = \frac{f(x)-f(qx+(1-q)b)}{(1-q)(b-x)}, \ x \neq b \end{align} $ | (1.5) |
respectively. Also, $ _{a}D_{q}f(a) = \lim_{x\longrightarrow a} \ _{a}D_{q}f(x) $ and $ _{b}D_{q}f(b) = \lim_{x\longrightarrow b} \ _{b}D_{q}f(x) $.
Definition 4. [4,7] The $ q_{a} $-definite integral and $ q_{b} $-definite integral of a continuous function $ f:I: = [a, b]\rightarrow \mathbb{R} $ on $ [a, b] $ are defined by;
$ \begin{align} \int_{a}^{x}f(t)_{a}d_{q}t = (1-q)(x-a)\sum\limits_{n = 0}^{\infty}q^{n}f(q^{n}x+(1-q^{n})a) \end{align} $ | (1.6) |
and
$ \begin{align} \int_{x}^{b}f(t)_{b}d_{q}t = (1-q)(b-x)\sum\limits_{n = 0}^{\infty}q^{n}f(q^{n}x+(1-q^{n})b) \end{align} $ | (1.7) |
respectively, where $ x\in I, \, q\in (0, 1) $.
Definition 5. [8] The $ q_{a-h} $-derivative, where $ q\in (0, 1), \, h\in\mathbb{R} $ of a continuous function $ f:I\rightarrow \mathbb{R} $ at $ x \in [a, b]\subset I $ is defined by;
$ \begin{equation} C_{h}D_{q}^{a}f(x) = \frac{f(x)-f(qx+(1-q)a+qh)}{(1-q)(x-a)-qh}, x\neq \frac{a(1-q)+qh}{1-q}: = x_{0} \end{equation} $ | (1.8) |
and $ q_{b-h} $-derivative of $ f $ at $ x \in [a, b] $ is given by;
$ \begin{equation} C_{h}D_{q}^{b}f(x) = \frac{f(x)-f(qx+(1-q)b+qh)}{(1-q)(x-b)-qh}, x\neq \frac{b(1-q)+qh}{1-q}: = y_{0}. \end{equation} $ | (1.9) |
Also, $ C_{h}D_{q}^{a}f(x_{0}) = \lim_{x\longrightarrow x_{0}}C_{h}D_{q}^{a}f(x) $ and $ C_{h}D_{q}^{b}f(x_{0}) = \lim_{x\longrightarrow y_{0}}C_{h}D_{q}^{b}f(x) $.
If $ h = 0 $ in Definition 5, then it reduces to Definition 3.
Definition 6. [8] The $ q_{a}-h $-integral and $ q_{b}-h $-integral of a continuous function $ f:I = [a, b]\rightarrow \mathbb{R} $ on $ [a, b] $ are defined by;
$ \begin{align*} &I_{q-h}^{a}f(x): = \int_{a}^{x} f(t)_{h}d_{q}^{a}t \\&\nonumber = ((1-q)(x-a)+qh)\sum\limits_{n = 0}^{\infty}q^{n}f(q^{n}x+(1-q^{n})a+nq^{n}h), \ x > a \end{align*} $ |
and
$ \begin{align*} &I_{q-h}^{b}f(x): = \int_{x}^{b} f(t)_{h}d_{q}^{b}t \\&\nonumber = ((1-q)(b-x)+qh)\sum\limits_{n = 0}^{\infty}q^{n}f(q^{n}x+(1-q^{n})b+nq^{n}h), \ x < b \end{align*} $ |
respectively, where $ 0 < q < 1, \, h\in\mathbb{R} $.
If $ h = 0 $ in Definition 6, then it reduces to Definition 4.
By utilizing the above generalized definitions of integrals and derivatives, a new and novel theory called $ q $-calculus has been established. This is used frequently in generalizing classical results based on ordinary calculus; for a detailed study, we refer the readers to [9,10]. In the field of integral inequalities, it is a natural phenomenon to convert integral inequalities into $ q $-integral inequalities. Authors have been working massively in this direction, and many interesting articles have been published by them. Recently, in [3], authors proved the following $ q $-Hermite-Hadamard inequalities for convex functions by using $ q $-definite integrals.
Theorem 1. Let $ f $ be a convex function on $ [a, b] $. If it is differentiable on $ (a, b) $, then the following inequality for $ q_{a} $-integrals holds:
$ \begin{align} &f\left(\frac{qa+b}{1+q}\right) \leq\frac{1}{b-a}\int_{a}^{b}f(x)d_{q}^{a}x\leq\frac{qf(a)+f(b)}{1+q}, \end{align} $ | (1.10) |
where $ 0 < q < 1 $.
Here it is important to state that, firstly the above inequality was given by Marinković et al., see [11,Theorem 5.3].
Theorem 2. With assumptions of the above theorem, the following inequality for $ q_{a} $-integrals holds:
$ \begin{align} f\left(\frac{a+qb}{1+q}\right)+f'\left(\frac{a+qb}{1+q}\right) \frac{(1-q)(b-a)}{1+q}\leq\frac{1}{b-a}\int_{a}^{b}f(x)d_{q}^{a}x\leq\frac{qf(a)+f(b)}{1+q}. \end{align} $ | (1.11) |
Theorem 3. With assumptions of the above theorem, the following inequality for $ q_{a} $-integrals holds:
$ \begin{align} &f\left( \frac{a+b}{2}\right) +f'\left(\frac{a+b}{2}\right)\frac{(1-q)(b-a)}{2(1+q)}\leq\frac{1}{b-a}\int_{a}^{b}f(x)d_{q}^{a}x\leq\frac{qf(a)+f(b)}{1+q}. \end{align} $ | (1.12) |
In [4], authors have proved the $ q $-Hermite-Hadamard inequalities for convex functions stated in the following theorems:
Theorem 4. Let $ f $ be a convex function on $ [a, b] $. If it is differentiable on $ (a, b) $, then the following inequality for $ q_{b} $-integrals holds:
$ \begin{align} f\left(\frac{a+qb}{1+q}\right)\leq\frac{1}{b-a}\int_{a}^{b}f(x)d_{q}^{b}x\leq\frac{f(a)+qf(b)}{1+q}. \end{align} $ | (1.13) |
For a detailed study on $ q $-integral inequalities, we refer the readers to [12,13,14,15,16] and the references therein. The following example is frequently used in proving the inequalities of this paper.
Example 1: Let $ g(x) = x $, $ x\in[a, b] $ and $ 0 < q < 1 $. Then $ I_{q-h}^{a}(g(x)) $, $ I_{q-h}^{b}(g(x)) $ are calculated as fallows:
$ \begin{align} I_{q-h}^{a}(g(x))& = \int_{a}^{x}g(x)_{h}d_{q}^{a}x = ((1-q)(x-a)+qh)\sum\limits_{n = 0}^{\infty}q^{n}g(q^{n}x+(1-q^{n})a+nq^{n}h)\\& = \left((1-q)(x-a)+qh\right)\left(\sum\limits_{n = 0}^{\infty}q^{2n}x+\sum\limits_{n = 0}^{\infty}(q^{n}-q^{2n})a+h\sum\limits_{n = 0}^{\infty}nq^{2n}\right)\\& = \left((1-q)(x-a)+qh\right)\left(\frac{x+aq}{1-q^{2}}+h\sum\limits_{n = 0}^{\infty}nq^{2n}\right), \end{align} $ | (1.14) |
$ \begin{align} I_{q-h}^{b}(g(x))& = \int_{x}^{b}g(x)_{h}d_{q}^{b}x = ((1-q)(b-x)+qh)\sum\limits_{n = 0}^{\infty}q^{n}g(q^{n}x+(1-q^{n})b+nq^{n}h)\\& = \left((1-q)(b-x)+qh\right)\left(\sum\limits_{n = 0}^{\infty}q^{2n}x+\sum\limits_{n = 0}^{\infty}(q^{n}-q^{2n})b+h\sum\limits_{n = 0}^{\infty}nq^{2n}\right)\\& = \left((1-q)(b-x)+qh\right)\left(\frac{x+bq}{1-q^{2}}+h\sum\limits_{n = 0}^{\infty}nq^{2n}\right). \end{align} $ | (1.15) |
In this section, we prove generalized $ q-h $-Hermite-Hadamard type inequalities for convex functions. Several variants of the $ q $-Hermite-Hadamard inequality are deducible in special cases. Throughout the paper, we consider the sum of the series $ \sum_{n = 0}^{\infty}nq^{2n} $ equal to $ \mathcal{S} $.
Theorem 5. Let $ \zeta:[a, b] \rightarrow \mathbb{R} $ be a convex function on $ (a, b) $ such that $ 0\leq a < b $. Then we have
$ \begin{align} &\zeta\left(x_o\right)\bigg(\frac{(1-q)(b-x)+qh}{1-q}\bigg)+m\bigg((1-q)(b-x)+qh\bigg)\\&\left(\frac{(x-b)+q(b-a)}{(1-q)(1+q)}+h\mathcal{S}\right)\leq\int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x\leq \bigg((1-q)(b-x)+qh\bigg)\\&\left(\frac{\zeta(a)}{1-q}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1-q^{2}}+h\mathcal{S}\bigg)\right), \end{align} $ | (2.1) |
where $ x_o = \frac{qa+b}{1+q} $ and $ m\in \bigg[\zeta'_{-}\left(x_o\right), \zeta'_{+}\left(x_o\right)\bigg] $.
Proof. Since $ \zeta $ is a convex function, it has at least one line of support at each $ x_o = \frac{qa+b}{1+q} $ in $ (a, b) $. The lines of support for $ \zeta $ are denoted by $ \mathcal{L} $ and defined as follows:
$ \begin{equation*} \mathcal{L}(x) = \zeta\left(x_o\right)+m\left(x-x_o\right), \quad m\in \bigg[\zeta'_{-}\left(x_o\right), \zeta'_{+}\left(x_o\right)\bigg]. \end{equation*} $ |
The lines of support always lie below the graph of a convex function; therefore we have
$ \begin{equation} \zeta\left(x_o\right)+m\left(x-x_o\right)\leq \zeta(x), \quad\forall x \in [a, b]. \end{equation} $ | (2.2) |
By applying $ q_{b-h} $-integral on both sides of (2.2), we have the following inequality:
$ \begin{equation} \int_{x}^{b}\left(\zeta\left(x_o\right)+m\left(x-x_o\right)\right)\ _{h}d_{q}^{b}x\leq \int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x. \end{equation} $ | (2.3) |
The above inequality (2.3), can be written as follows:
$ \begin{equation} \zeta\left(x_o\right)\int_{x}^{b}\ _{h}d_{q}^{b}x+m\left(\int_{x}^{b}x\ _{h}d_{q}^{b}x-x_o\int_{x}^{b}\ _{h}d_{q}^{b}x\right)\leq \int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x. \end{equation} $ | (2.4) |
For $ \zeta(x) = 1 $ in (1.15), we have the following identity:
$ \begin{equation} \int_{x}^{b}\ _{h}d_{q}^{b}x = \frac{(1-q)(b-x)+qh}{1-q}. \end{equation} $ | (2.5) |
By using (1.15) and (2.5) in (2.4), after simplification, the first inequality of (2.1) is obtained. Now, on the other hand, let $ \mathcal{K} $ be a function expressing the line connecting points $ (a, \zeta(a)) $ and $ (b, \zeta(b)) $, then we have:
$ \begin{equation*} \mathcal{K}(x) = \zeta(a)+\frac{\zeta(b)-\zeta(a)}{b-a}(x-a). \end{equation*} $ |
Since $ \zeta $ is a convex function on $ [a, b] $, the inequality $ \zeta(x)\leq\mathcal{K}(x) $ holds true. Therefore, the following inequality holds:
$ \begin{equation} \zeta(x)\leq \zeta(a)+\frac{\zeta(b)-\zeta(a)}{b-a}(x-a), \quad\forall x \in [a, b]. \end{equation} $ | (2.6) |
By applying $ q_{b-h} $-integral on both sides of (2.6), we have the following inequality:
$ \begin{equation} \int_{x}^{b}\zeta(x)\ _{h}d_{q}^{b}x\leq\int_{x}^{b}\bigg(\zeta(a)+\frac{\zeta(b)-\zeta(a)}{b-a}(x-a)\bigg)\ _{h}d_{q}^{b}x. \end{equation} $ | (2.7) |
The above inequality (2.7), can be written as follows:
$ \begin{equation} \int_{x}^{b}\zeta(x)\ _{h}d_{q}^{b}x\leq\zeta(a)\int_{x}^{b}\ _{h}d_{q}^{b}x+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\int_{x}^{b}x\ _{h}d_{q}^{b}x-a\int_{x}^{b}\ _{h}d_{q}^{b}x\bigg). \end{equation} $ | (2.8) |
By using (1.15) and (2.5) in (2.8), then after simplification, the second inequality of (2.1) is obtained.
Corollary 1. A convex differentiable function must satisfies the following inequalities:
$ \begin{align} &\zeta\left(x_o\right)\bigg(\frac{1}{1-q}\bigg)+\zeta'\left(x_o\right)\left(\frac{(x-b)+q(b-a)}{(1-q)(1+q)}+h\mathcal{S}\right)\\&\leq\frac{1}{\big((1-q)(b-x)+qh\big)}\int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\left[\frac{\zeta(a)}{1-q}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1-q^{2}}+h\mathcal{S}\bigg)\right]. \end{align} $ | (2.9) |
Proof. A convex differentiable function has a unique line of support at each point in the interior of its domain. Therefore, at point $ x_o $, the slope of the line of support (tangent line) will be $ m = \zeta'\left(x_o\right) $. By using this value of $ m $ in (2.1), we get the required inequality (2.9).
Corollary 2. For $ h = 0 $ in (2.1), the following inequalities must hold:
$ \begin{align} &\zeta\left(x_o\right)+m\left(\frac{(x-b)+q(b-a)}{(1+q)}\right)\leq\frac{1}{b-x}\int_{x}^{b}\zeta(x)_{0}d_{q}^{b}x\\&\leq{\zeta(a)}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1+q}\bigg). \end{align} $ | (2.10) |
Corollary 3. For $ x = a $ in (2.1), the following inequalities must hold:
$ \begin{align} &\zeta\left(x_o\right)\bigg(\frac{1}{1-q}\bigg)+m\left(h\mathcal{S}-\frac{b-a}{1+q}\right)\leq\frac{1}{\big((1-q)(b-a)+qh\big)}\int_{a}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\frac{\zeta(a)+q\zeta(b)}{(1-q)(1+q)}+\frac{\zeta(b)-\zeta(a)}{b-a}h\mathcal{S}. \end{align} $ | (2.11) |
Theorem 6. Let $ \zeta:[a, b] \rightarrow \mathbb{R} $ be a convex function on $ (a, b) $ such that $ 0\leq a < b $. Then we have
$ \begin{align} &\zeta\left(y_o\right)\bigg(\frac{1}{1-q}\bigg)+m\left(\frac{x-a}{(1-q)(1+q)}+h\mathcal{S}\right)\\&\leq\frac{1}{\big((1-q)(b-x)+qh\big)}\int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\left[\frac{\zeta(a)}{1-q}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1-q^{2}}+h\mathcal{S}\bigg)\right], \end{align} $ | (2.12) |
where $ y_o = \frac{qa+b}{1+q} $ and $ m\in \bigg[\zeta'_{-}\left(y_o\right), \zeta'_{+}\left(y_o\right)\bigg] $.
Proof. Since $ \zeta $ is a convex function, it has at least one line of support at each $ y_o = \frac{a+qb}{1+q} $ in $ (a, b) $. The lines of support for $ \zeta $ are denoted by $ \mathcal{L}_1 $ and defined as follows:
$ \begin{equation*} \mathcal{L}_1(x) = \zeta\left(y_o\right)+m\left(x-y_o\right), \quad m\in \bigg[\zeta'_{-}\left(y_o\right), \zeta'_{+}\left(y_o\right)\bigg]. \end{equation*} $ |
The lines of support always lie below the graph of a convex function, therefore we have
$ \begin{equation} \zeta\left(y_o\right)+m\left(x-y_o\right)\leq \zeta(x), \quad\forall x \in [a, b]. \end{equation} $ | (2.13) |
By applying $ q_{b-h} $-integral on both sides of (2.13), we have the following inequality:
$ \begin{equation} \int_{x}^{b}\left(\zeta\left(y_o\right)+m\left(x-y_o\right)\right)\ _{h}d_{q}^{b}x\leq \int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x. \end{equation} $ | (2.14) |
The above inequality (2.14), can be written as follows:
$ \begin{equation} \zeta\left(y_o\right)\int_{x}^{b}\ _{h}d_{q}^{b}x+m\left(\int_{x}^{b}x\ _{h}d_{q}^{b}x-y_o\int_{x}^{b}\ _{h}d_{q}^{b}x\right)\leq \int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x. \end{equation} $ | (2.15) |
By using (1.15) and (2.5) in (2.15), after simplification, the first inequality of (2.12) is obtained. The proof of the second inequality of (2.12) is similar to the proof of the second inequality given in Theorem 5.
Corollary 4. A convex differentiable function must satisfies the following inequalities:
$ \begin{align} &\zeta\left(y_o\right)\bigg(\frac{1}{1-q}\bigg)+\zeta'\left(y_o\right)\left(\frac{x-a}{(1-q)(1+q)}+h\mathcal{S}\right)\\&\leq\frac{1}{\big((1-q)(b-x)+qh\big)}\int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\left[\frac{\zeta(a)}{1-q}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1-q^{2}}+h\mathcal{S}\bigg)\right]. \end{align} $ | (2.16) |
Proof. A convex differentiable function has a unique line of support at each point in the interior of its domain. Therefore, at point $ y_o $, the slope of the line of support (the tangent line) will be $ m = \zeta'\left(y_o\right) $. By using this value of $ m $ in (2.12), we get the required inequality (2.16).
Corollary 5. For $ h = 0 $ in (2.12), the following inequalities hold:
$ \begin{align} &\zeta\left(y_o\right)+m\left(\frac{x-a}{1+q}\right)\leq\frac{1}{b-x}\int_{x}^{b}\zeta(x)_{0}d_{q}^{b}x\\&\leq{\zeta(a)}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1+q}\bigg). \end{align} $ | (2.17) |
Corollary 6. For $ x = a $ in (2.12), the following inequalities hold:
$ \begin{align} &\zeta\left(y_o\right)\bigg(\frac{1}{1-q}\bigg)+mh\mathcal{S}\leq\frac{1}{\big((1-q)(b-a)+qh\big)}\int_{a}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\frac{\zeta(a)+q\zeta(b)}{1-q^2}+\frac{\zeta(b)-\zeta(a)}{b-a}h\mathcal{S}. \end{align} $ | (2.18) |
Theorem 7. Let $ \zeta:[a, b] \rightarrow \mathbb{R} $ be a convex function on $ (a, b) $ such that $ 0\leq a < b $. Then we have
$ \begin{align} &\zeta\left(z_o\right)\bigg(\frac{1}{1-q}\bigg)+m\left(\frac{2x-(b+a)+q(b-a)}{2(1-q)(1+q)}+h\mathcal{S}\right)\\&\leq\frac{1}{\big((1-q)(b-x)+qh\big)}\int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\left[\frac{\zeta(a)}{1-q}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1-q^{2}}+h\mathcal{S}\bigg)\right], \end{align} $ | (2.19) |
where $ z_o = \frac{a+b}{2} $ and $ m\in \bigg[\zeta'_{-}\left(z_o\right), \zeta'_{+}\left(z_o\right)\bigg] $.
Proof. Since $ \zeta $ is a convex function, it has at least one line of support at each $ z_o = \frac{a+b}{2} $ in $ (a, b) $. The lines of support for $ \zeta $ are denoted by $ \mathcal{L}_2 $ and defined as follows:
$ \begin{equation*} \mathcal{L}_2(x) = \zeta\left(z_o\right)+m\left(x-z_o\right), \quad m\in \bigg[\zeta'_{-}\left(z_o\right), \zeta'_{+}\left(z_o\right)\bigg]. \end{equation*} $ |
The lines of support always lie below the graph of a convex function, therefore we have
$ \begin{equation} \zeta\left(z_o\right)+m\left(x-z_o\right)\leq \zeta(x), \quad\forall x \in [a, b]. \end{equation} $ | (2.20) |
By applying $ q_{b-h} $-integral on both sides of (2.20), we have the following inequality:
$ \begin{equation} \int_{x}^{b}\left(\zeta\left(z_o\right)+m\left(x-z_o\right)\right)\ _{h}d_{q}^{b}x\leq \int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x. \end{equation} $ | (2.21) |
The above inequality (2.21), can be written as follows:
$ \begin{equation} \zeta\left(z_o\right)\int_{x}^{b}\ _{h}d_{q}^{b}x+m\left(\int_{x}^{b}x\ _{h}d_{q}^{b}x-z_o\int_{x}^{b}\ _{h}d_{q}^{b}x\right)\leq \int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x. \end{equation} $ | (2.22) |
By using (1.15) and (2.5) in (2.22), after simplification, the first inequality of (2.19) is obtained. The proof of the second inequality of (2.19) is similar to the proof of the second inequality given in Theorem 5.
Corollary 7. A convex differentiable function must satisfies the following inequalities:
$ \begin{align} &\zeta\left(z_o\right)\bigg(\frac{1}{1-q}\bigg)+\zeta'\left(z_o\right)\left(\frac{2x-(b+a)+q(b-a)}{2(1-q)(1+q)}+h\mathcal{S}\right)\\&\leq\frac{1}{\big((1-q)(b-x)+qh\big)}\int_{x}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\left[\frac{\zeta(a)}{1-q}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1-q^{2}}+h\mathcal{S}\bigg)\right]. \end{align} $ | (2.23) |
Proof. A convex differentiable function has a unique line of support at each point in the interior of its domain. Therefore, at point $ z_o $, the slope of the line of support (the tangent line) will be $ m = \zeta'\left(z_o\right) $. By using this value of $ m $ in (2.19), we get the required inequality (2.23).
Corollary 8. For $ h = 0 $ in (2.19), the following inequalities hold:
$ \begin{align} &\zeta\left(z_o\right)+m\left(\frac{2x-(b-a)+q(b-a)}{2(1+q)}\right)\leq\frac{1}{b-x}\int_{x}^{b}\zeta(x)_{0}d_{q}^{b}x\\&\leq{\zeta(a)}+\frac{\zeta(b)-\zeta(a)}{b-a}\bigg(\frac{(x-a)+q(b-a)}{1+q}\bigg). \end{align} $ | (2.24) |
Corollary 9. For $ x = a $ in (2.19), the following inequalities hold:
$ \begin{align} &\zeta\left(z_o\right)\bigg(\frac{1}{1-q}\bigg)+m\left(h\mathcal{S}-\frac{b-a}{2(1+q)}\right)\leq\frac{1}{\big((1-q)(b-a)+qh\big)}\int_{a}^{b}\zeta(x)_{h}d_{q}^{b}x\\&\leq\frac{\zeta(a)+q\zeta(b)}{(1-q)(1+q)}+\frac{\zeta(b)-\zeta(a)}{b-a}h\mathcal{S}. \end{align} $ | (2.25) |
We studied Hermite-Hadamard type inequalities for convex functions by using $ q-h $-integrals. Properties of convex functions are utilized in establishing these inequalities. Results are derived for $ h $-integrals in implicit form, while the inequalities for $ q $-integrals are given explicitly. In future work, we are interested in the utilization of other well-known classes of functions to get corresponding results for $ q-h $-integrals. Also, other classical integral inequalities can be studied for $ q-h $-integrals.
This work was supported by the Research Institute of Intelligent Manufacturing Industry Technology of SiChuan Arts and Science university (No. ZNZZ2206).
The authors declare that they have no conflict of interest.
[1] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[2] | M. Andrić, G. Farid, J. Pečarić, Analytical inequalities for fractional calculus operators and the Mittag-Leffler function, Zagreb: Element, 2021. |
[3] |
N. Alp, M. Z. Sarikaya, M. Kunt, I. Iscan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
![]() |
[4] |
S. Bermudo, P. Kórus, J. E. Nápoles Valdés, On $q$-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6
![]() |
[5] |
M. A. Khan, N. Mohammad, E. R. Nwaeze, Y.-M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
![]() |
[6] | G. Farid, M. Anwar, M. Shoaib, On generalizations of $q$- and $h$-integrals and some related inequalities, submitted for publication. |
[7] |
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121
![]() |
[8] |
Y. Liu, G. Farid, D. Abuzaid, K. Nonlaopon, On $q$-Hermite-Hadamard inequalities via $q-h$-integrals, Symmetry, 14 (2022), 2648. https://doi.org/10.3390/sym14122648 doi: 10.3390/sym14122648
![]() |
[9] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[10] | T. Ernst, A comprehensive treatment of $q$-calculus, Basel: Birkhäuser, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
[11] |
S. Marinković, P. Rajković, M. Stanković, The inequalities for some types $q$-integrals, Comput. Math. Appl., 56 (2008), 2490–2498. https://doi.org/10.1016/j.camwa.2008.05.035 doi: 10.1016/j.camwa.2008.05.035
![]() |
[12] |
Y. Miao, F. Qi, Several $q$-integral inequalities, J. Math. Inequal., 3 (2009), 115–121. http://dx.doi.org/10.7153/jmi-03-11 doi: 10.7153/jmi-03-11
![]() |
[13] | K. Brahim, N. Bettaibi, M. Sellami, On some Feng Qi type $q$-integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 9 (2008), 43. |
[14] |
H. Gauchman, Integral inequalities in $q$-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9
![]() |
[15] |
A. A. El-Deeb, J. Awrejcewicz, Ostrowski-Trapezoid-Grüss-type on $(q, \omega)$-Hahn difference operator, Symmetry, 14 (2022), 1776. https://doi.org/10.3390/sym14091776 doi: 10.3390/sym14091776
![]() |
[16] |
S. I. Butt, H. Budak, K. Nonlaopon, New quantum Mercer estimates of Simpson–Newton-like inequalities via convexity, Symmetry, 14 (2022), 1935. https://doi.org/10.3390/sym14091935 doi: 10.3390/sym14091935
![]() |
1. | Saira Bano Akbar, Mujahid Abbas, Waqas Nazeer, Hüseyin Budak, New versions of the Hermite–Hadamard inequality for $(\phi -h)$-integrals, 2024, 2024, 1687-2770, 10.1186/s13661-024-01970-z |