Loading [MathJax]/jax/output/SVG/jax.js
Research article

Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type

  • Received: 25 April 2023 Revised: 06 June 2023 Accepted: 15 June 2023 Published: 26 July 2023
  • MSC : 26A51, 26A33, 33E12

  • This paper investigates some well-known inequalities for q-h-integrals. These include Hölder, Ostrowski, Grüss and Opial type inequalities. Refinement of the Hadamard inequality for q-h-integrals is also established by applying the definition of strongly convex functions. From main theorems, q-Hölder, q-Ostrowski and q-Grüss inequalities can be obtained in particular cases.

    Citation: Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis. Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type[J]. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192

    Related Papers:

    [1] Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103
    [2] Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen . Certain exponential type $ m $-convexity inequalities for fractional integrals with exponential kernels. AIMS Mathematics, 2022, 7(4): 6311-6330. doi: 10.3934/math.2022351
    [3] Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006
    [4] Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310
    [5] Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-$ \alpha $ integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624
    [6] Miguel Vivas-Cortez, Muhammad Aamir Ali, Ghulam Murtaza, Ifra Bashir Sial . Hermite-Hadamard and Ostrowski type inequalities in $ \mathfrak{h} $-calculus with applications. AIMS Mathematics, 2022, 7(4): 7056-7068. doi: 10.3934/math.2022393
    [7] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
    [8] Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769
    [9] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [10] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
  • This paper investigates some well-known inequalities for q-h-integrals. These include Hölder, Ostrowski, Grüss and Opial type inequalities. Refinement of the Hadamard inequality for q-h-integrals is also established by applying the definition of strongly convex functions. From main theorems, q-Hölder, q-Ostrowski and q-Grüss inequalities can be obtained in particular cases.



    Integral inequalities are important tools to estimate different kinds of quantities under some constraints. For example, Hölder inequality estimates the cumulative aggregate of product of two functions (vectors) to product of independent aggregates of functions (vectors). The Ostrowski inequality estimates the value of function f(x) to its integral mean provided f is differentiable and its derivative is a bounded function. The well known Grüss inequality estimates the integral mean of product of two functions to the product of their integral means.

    Currently, inequalities of q-integrals are studied very frequently by researchers. This article deals with some quantum estimates of integral inequalities involving quantum calculus. In particular, for recent articles closely related to the topic of this paper we refer the readers to [1,2,3,4,5]. We prove Hölder, Ostrowski and Grüss type inequalities for q-h-integrals. These inequalities will provide generalizations of several q-integral and classical integral inequalities.

    In the following we recall q-derivative, q-integral and q-derivative/q-integral on a finite interval [a,b].

    Definition 1. [13] The following expression

    Dqf(x)=dqf(x)dqx=f(qx)f(x)(q1)x (1.1)

    is called the q-derivative of a continuous function f where q(0,1).

    Definition 2. [4] Assume that f:JR is a continuous function, xJ:=[a,b] and 0<q<1. Then, the expression

    aDqf(x)=f(x)f(qx+(1q)a)(1q)(xa), xa (1.2)

    is called the q-derivative on J of function f at x. Also, aDqf(a) =limxa aDqf(x).

    Definition 3. [13] Let J:=[a,b] and g: JR be a continuous function. The q-definite integral is given by the following formula:

    xag(t) adqt=(1q)(xa)n=0qng(qnx+(1qn)a), (1.3)

    for xJ, q(0,1).

    By using definition of q-definite integral it is possible to generalize the theory and concepts based on Riemann integrals. On the other hand, fractional integral operators also generalize Riemann integrals and are used in extending concepts of ordinary calculus. For example, classical integral inequalities have been published for fractional and local fractional integral operators, see [6,7,8]. In the field of mathematical inequalities, several integral inequalities such as Hadamard, Ostrowski and many other inequalities have been published for q-definite integrals. In [4], authors proved the Hölder, Ostrowski and Grüss type inequalities for these integrals which are stated in the upcoming theorems.

    Theorem 1. Assume that f, ξ:JR are two continuous functions and xJ, 0<q<1, p1>1 such that 1p1+1p2=1. Then, the upcoming inequality holds for q-integrals:

    xa|f(t)||ξ(t)|adqt (xa|f(t)|p1 adqt)1p1(xa|ξ(t)|p2 adqt)1p2. (1.4)

    Theorem 2. Assume that f:JR is q-differentiable function and aDqf is continuous on [a,b] where 0<q<1. Then, the upcoming inequality holds for q-integrals:

    |f(x)1baba f(t)adqt|aDqf(ba)(2q1+q(x(3q1)a+(1+q)b4qba)2+(q2+6q18q(1+q))). (1.5)

    Theorem 3. Assume that g,ξ:JR be L1, L2 Lipschitzian continuous functions on [a,b] such that

    |g(u)g(v) |  L1|uv|,|ξ(u)ξ(v)| L2|uv| (1.6)

    for all u,v[a,b]. Then, the upcoming inequality holds for q-integrals:

    |1babag(t)ξ(t) adqt(1babag(t) adqt)(1babaξ(t) adqt)|qL1L2(ba)2(1+q+q2)(1+q)2. (1.7)

    Next, we recall q-h-derivative and q-h-integral. These combine q-derivative/integral and h-derivative/integral in a single definition.

    Definition 4. [9] Assume that f: IR be a continuous function. For 0<q<1 and hR, the q-h derivative of f is given by the formula;

    ChDqf(x)=hdqf(x)hdqx=f(qx+h)f(x)(q1)x+qh. (1.8)

    For h=0, we have C0Dqf(x)=Dqf(x). 

    Definition 5. [9] Let 0<q<1 and function f: I:=[a,b]R be a continuous function. Then, the left and right q-h integrals on I are defined by

    Ia+qhf(x):= xaf(t) hdqt=((1q)(xa)+qh)n=0qnf(qna+(1qn)x+nqnh), x>a, (1.9)
    Ibqhf(x):= bxf(t) hdqt=((1q)(bx)+qh)n=0qnf(qnx+(1qn)b+nqnh), x<b. (1.10)

    We will also prove a refinement of the Hadamard q-h-integral inequality for convex functions given in [18]. For this the following definitions will be utilized.

    Definition 6. Suppose a real valued function f be defined on real line's interval I. Then, function f is said to be convex on I if the upcoming inequality holds:

    f(ta+(1t)b)tf(a)+(1t)f(b), (1.11)

    for t[0,1], a, bI.

    Definition 7. [17] Suppose that M is a convex subset of X, (X,.) be a normed space. A function f : MXR will be called strongly convex function with modulus C0 if

    f(tu+(1t)v)tf(u)+(1t)f(v)Ct(1t)vu2 (1.12)

    holds for all u, vMX, t[0,1].

    For C=0, (1.12) reduces to (1.11), i.e., the definition of convex function is obtained. In the forthcoming section we prove the Hölder, Ostrowski, Grüss and Hadamard inequalities for q-h-integrals. We also give their special cases for q-integrals and connect them with their classical versions.

    First, we give the Hölder inequality for q-h-integrals in the theorem stated below.

    Theorem 4. Let J = [a,b], q(0,1), p1>1 with 1p1+1p2=1. Also, let f and ξ be two continuous functions defined on J. Then, the upcoming inequality holds for q-h-integrals:

    Ia+q_h(|f(t)||ξ(t)|)(Ia+q_h|f(t)|p1)1p1(Ia+q_h|ξ(t)|p2)1p2. (2.1)

    Proof. The following equation holds for left q-h-integrals:

    Ia+q_h(|f(t)||ξ(t)|)=((1q)(xa)+qh)n=0qn|f(qna+(1qn)x+nqnh)|×|ξ(qna+(1qn)x+nqnh)|=((1q)(xa)+qh)n=0|f(qna+(1qn)x+nqnh)|(qn)1p1×|ξ(qna+(1qn)x+nqnh)|(qn)1p2.

    By applying the Hölder inequality in discrete case on the right hand side of above inequality we have the following inequality:

    Ia+q_h(|f(t)||ξ(t)|)((1q)(xa)+qh)(n=0|f(qna+(1qn)x+nqnh)|p1qn)1p1×(n=0|ξ(qna+(1qn)x+nqnh)|p2qn)1p2.

    By using the definition of q-h-integral on the right hand side of the above inequality one can have the inequality (2.1).

    Remark 1. i) If h=0 then we get the q-Hölder inequality stated in Theorem 1.1.

    ii) If q1 and h=0 then inequality (2.1) becomes the Hölder integral inequality as follows:

    ba|f(x)ξ(x)|[ba|f(x)|pdx]1p[ba|ξ(x)|qdx]1q. (2.2)

    In the next theorem we give Ostrowski type inequality for K-Lipschitz function on a finite interval.

    Theorem 5. Suppose that f be a q-h-integerable function. If f is K-Lipschitz function on J:=[a,b]. Then, we have the following inequality:

    |(1q)(ba)+qh(1q)(ba)f(x)1babaf(t) hdqt|K((1q)(ba)+qh)(ba)(1q2)((|x|+|b|)q+|x|+|a|+|h|(1q2)S), (2.3)

    where S=n=0q2nn.

    Proof. From the definition of q-h-integral one can have

    |(1q)(ba)+qh(1q)(ba)f(x)1babaf(t) hdqt|=|1baba(f(x)f(t)) hdqt|1baba|f(x)f(t)| hdqt. (2.4)

    It is given that f is K-Lipschitz function, one can have

    1baba|f(x)f(t)|hdqtKbaba|xt| hdqt. (2.5)

    By using definition of q-h-integral and properties of absolute value function we have

    ba|xt| hdqtba(|x|+|t|) hdqt=((1q)(ba)+qh)n=0qn(|x|+|qna+(1qn)b+nqnh|)((1q)(ba)+qh)1q2((|x|+|b|)q+|x|+|a|+|h|(1q2)S). (2.6)

    Therefore, from (2.5) we obtain

    1baba|f(x)f(t)|hdqtK((1q)(ba)+qh)(ba)(1q2)×((|x|+|b|)q+|x|+|a|+|h|(1q2)S). (2.7)

    The required inequality is obtained by combining (2.4) and (2.7). Here we prove the q-h-Korkine identity as follows:

    Lemma 1. Suppose that f, ξ be two continuous functions on J and q(0,1). The following identity for q-integrals holds true:

    12baba(f(x)f(y))(ξ(x)ξ(y)) hdqx hdqy=((1q)(ba)+qh)1qbaf(x)ξ(x) hdqx(baf(x) hdqx)(baξ(x) hdqx). (2.8)

    Proof. The following equation holds for q-h-integrals:

    baba(f(x)f(y))(ξ(x)ξ(y)) hdqx hdqy=baba(f(x)ξ(x)f(x)ξ(y)f(y)ξ(x)+f(y)ξ(y)) hdqx hdqy=(((1q)(ba)+qh)n=0qnf(qna+(1qn)b+nqnh)×ξ(qna+(1qn)b+nqnh))ba hdqy((1q)(ba)+qh)n=0qnf(qna+(1qn)b+nqnh)baξ(y) hdqy((1q)(ba)+qh)n=0qnξ(qna+(1qn)b+nqnh)baf(y) hdqy+((1q)(ba)+qh)n=0qnf(qna+(1qn)b+nqnh)ξ(qna+(1qn)b+nqnh)ba hdqx=2((1q)(ba)+qh)1qbaf(x)ξ(x) hdqx2(baf(x) hdqx)(baξ(x) hdqx).

    From which one deduces (2.8).

    It can be noted that for h=0, the Korkine's identity for q-integrals is obtained. Furthermore, classical Korkine's identity is obtained by setting q1 along with h=0. The forthcoming theorem is established by using the Korkine's identity for q-h-integrals.

    Theorem 6. Suppose that f,ξ:JR are L1,L2 Lipschitzian continuous functions on [a,b] such that

    |f(x)f(y)|L1 |xy| ,|ξ(x)ξ(y)| L2 |xy| (2.9)

    for all  x,y [a,b]. Then, we have the inequality

    |1q(1q)(ba)+qhbaf(x)ξ(x) hdqx(1q(1q)(ba)+qhbaf(x) hdqx)(1q(1q)(ba)+qhbaξ(x)hdqx)|L1L2(q(ba)2(1+q+q2)(1+q)2+(h2U+2bhS2hT(ba)h2S2(1q)2hS(a+qb)1+q)(1q)), (2.10)

    where

    S=n=0nq2,T=n=0nq3,U=n=0n2q3.

    Proof. First, we estimate the right hand side of the Korkine's identity under given conditions for functions f and ξ. Then, the following inequality can be obtained:

    |baba(f(x)f(y))(ξ(x)ξ(y)) hdqxhdqy|L1L2baba(xy)2 hdqxhdqy=L1L2baba(x22xy+y2) hdqx hdqy=2L1L2(((1q)(ba)+qh)1qbax2 hdqx(bax hdqx)2). (2.11)

    The following equation holds for q-h-integrals:

    bax2 hdqx=((1q)(ba)+qh)1q(a2(1+q)+b2q(1+q2)+2abq2(1+q)(1+q+q2)+(h2U+2bhS2hT(ba))(1q)).

    Hence, we obtain

    ((1q)(ba)+qh)1qbax2 hdqx(bax hdqx)2=(((1q)(ba)+qh)1q)2(q(ba)2(1+q+q2)(1+q)2+(h2U+2bhS2hT(ba)h2S2(1q)2hS(a+qb)1+q)(1q)). (2.12)

    Thus, from (2.11) and (2.12)

    12baba |(f(x)f(y))(ξ(x)ξ(y))| hdqxhdqyL1L2(((1q)(ba)+qh)1q)2(q(ba)2(1+q+q2)(1+q)2+(h2U+2bhS2hT(ba)h2S2(1q)2hS(a+qb)1+q)(1q)).

    By applying the Korkine's identity we get the required inequality.

    Remark 2. i) If q1 and h=0, then (2.10) becomes the classical Grüss-Čebyšev integral inequality as follows [14,15]:

    |1babaf(x)ξ(x)dx(1babaf(x)dx)(1babaξ(x)dx)|L1L2(ba)212. (2.13)

    ii) If h=0 in (2.10) then we get Theorem 3.

    Next, we prove an Opial type inequality provided the fundamental theorem of calculus for q-h-integrals holds.

    Theorem 7. Let p(t) be a non-negative and continuous function on [0,k] and x(t)C(1)[0,k] be such that x(0)=x(k)=0 and x(t)>0 in (0,k). Then, the following inequality holds:

    k0p(t)|{x(t)+x(qt)} hDqx(t)| hdqt(k1qk0p2(t) hdqt)12k0|hDqx(t)|2 hdqt. (2.14)

    Proof. Let us choose y(t) and z(t) functions as follows:

    y(t)=t0|hDqx(s)| hdqs,z(t)=ht|hDqx(s)| hdqs. (2.15)

    For t[0,k], it follows that:

    |x(t)|=|t0 hDqx(s) hdqs|t0|hDqx(s)| hdqs=y(t),|x(t)|=|kt hDqx(s) hdqs|kt|hDqx(s)| hdqs=z(t), (2.16)
    |x(qt)|=|qt0 hDqx(s) hdqs|qt0|hDqx(s)| hdqs=y(t),|x(qt)|=|kqt hDqx(s) hdqs|kqt|hDqx(s)| hdqs=z(t). (2.17)

    From above, we obtain that |x(t)|y(t) and |x(t)|z(t). Thus, we get

    |x(t)|y(t)+z(t)2=12k0|hDqx(s)| hdqs. (2.18)
    |x(qt)|y(qt)+z(qt)2=12k0|hDq x(s)| hdqs. (2.19)

    By using (2.18), we have

    k0p(t)|x(t)|2 hdqt12k0p(t)(|hDqx(s)|)2 hdqt14(k0p(t) hdqt)(k0 hdqt)(k0p(t)|hDqx(s)|2)k4(1q)(k0p(t) hdqt)(k0|hDqx(t)|2 hdqt). (2.20)

    Similarly, by using (2.19) we have

    k0p(t)|x(qt)|2 hdqtk4(1q)(k0p(t) hdqt)(k0|hDqx(t)|2 hdqt). (2.21)

    Now, by using Cauchy-Schwarz inequality and (2.20) one can have

    k0p(t)|x(t) hDqx(t)| hdqt(k0p2(t)|x(t)|2 hdqt)12(k0|hDqx(t)|2 hdqt)12(k4(1q)(k0p2(t) hdqt)(k0|hDqx(t)|2 hdqt))12(k0|hDqx(t)|2 hdqt)1212(k(1q)k0p2(t) hdqt)12(k0|hDqx(t)|2 hdqt). (2.22)

    Similarly,

    k0p(t)|x(qt) hDqx(t)| hdqt12(k(1q)k0p2(t) hdqt)12(k0|hDqx(t)|2 hdqt). (2.23)

    By adding (2.22) and (2.23), one can get the required inequality (2.14).

    In the last theorem we give the Hadamard type inequality for strongly convex functions. Here, we will frequently use h1=(xa)h, h2=(bx)h,S=n=0q2nn,T=n=0q3nn,U=n=0q3nn2.

    Theorem 8. Let f: IRR+ be strongly convex function and q(0,1). Additionally, let a, bI, a<b. Then, the following inequalities must hold:

    f(a+x2)1q(1q)(xa)+qh1xaf(t) h1dqtC(xa)2(1+q3+2q(1q)4(1+q)(1+q+q2)+(h2U+hS2hT)(1q))(1q)+qh1q(f(x)(q1+q+(1q)hS)+f(a)(q1+q(1q)hS)C(xa)2(q2(1+q)(1+q+q2)+(1q)(2hThSh2U)), (2.24)

    provided f is left q-h-integrable and symmetric function at a+x2, x(a,b) and

    f(x+b2)1q(1q)(xa)+qh1bxf(t) h2dqtC(bx)2(1+q3+2q(1q)4(1+q)(1+q+q2)+(h2U+hS2hT)(1q))(1q)+qh1q(f(b)(q1+q+(1q)hS)+f(x)(q1+q(1q)hS)C(bx)2(q2(1+q)(1+q+q2)+(1q)(2hThSh2U)), (2.25)

    provided f is right q-h-integrable and symmetric function at x+b2, x(a,b).

    Proof. From definition of strongly convex function the following inequality is yielded:

    f(a+x2)12(f(ta+(1t)x)+f(tx+(1t)a))C(xa)2(t12)2,t[0,1].

    This leads to the following inequality for left q-h-integrals:

    f(a+x2)1q(1q)+qh(1210f(ta+(1t)x) hdqt+1210f(tx+(1t)a) hdqtC(xa)210(t12)2 hdqt). (2.26)

    Function f is symmetric about a+x2. Therefore,

    f(a+x2)1q(1q)+qh(10f(a+t(xa)) hdqtC(xa)210(t12)2 hdqt). (2.27)

    By definition, one can have

    10(t12)2 hdqt=(1q)+qh1q(1+q3+2q(1q)4(1+q)(1+q+q2)+(h2U+hS2hT)(1q)). (2.28)

    Then, by using (2.28) in (2.27) it takes the following form:

    f(a+x2)1q(1q)+qh10f(a+t(xa)) hdqtC(xa)2(1+q3+2q(1q)4(1+q)(1+q+q2)+(h2U+hS2hT)(1q)). (2.29)

    The following equation holds for left q-h-integrals:

    (1q)+qh(1q)(xa)+qh1xaf(t) h1dqt=((1q)+qh)n=0qnf(qna+(1qn)x+nqnh1)=10f(a+(xa)t) hdqt. (2.30)

    The following estimation of the last term in (2.30) holds for strongly convex function f:

    10f(a+(xa)t) hdqtf(x)10t hdqt+f(a)10(1t) hdqtC(xa)210t(1t) hdqt. (2.31)

    From (2.29)–(2.31) the following inequality can be constituted:

    f(a+x2)(1q)+qh(1q)(xa)+qh1xaf(t) h1dqtC(xa)2(1+q3+2q(1q)4(1+q)(1+q+q2)+(h2U+hS2hT)(1q))f(x)10t hdqt+f(a)10(1t) hdqtC(xa)210t(1t) hdqt. (2.32)

    The q-h-integrals on the right hand side of the above inequality can be evaluated as follows:

    10t hdqt=(1q)+qh1q(q1+q+(1q)hS), (2.33)
    10(1t) hdqt=(1q)+qh1q(q1+q(1q)hS), (2.34)

    and

    10t(1t) hdqt=((1q)+qh)1q(q2(1+q)(1+q+q2)+(1q)(2hThSh2U)). (2.35)

    By using (2.33)–(2.35) in the inequality (2.32), the required inequality (2.24) is obtained.

    Similarly, in (2.29) by using definition of right q-h-integral one can obtain the required inequality (2.25).

    Remark 3. By setting C=0, the inequalities (2.24) and (2.25) hold for left and right q-h-integrals for convex functions.

    We proved several well known inequalities for so-called q-h-integrals. These inequalities simultaneously hold for q- and h-integrals implicitly. Results for q-integrals are deduced which have been proven explicitly by different researchers in published articles. Also, we proved a refinement of q-h-Hadamard inequality for convex functions via strongly convex functions. This article may motivates the researchers to utilize q-h-integrals/derivatives in their future work.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/461/44

    Authors do not have conflict of interest.



    [1] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via (α,m)-convexity, J. Inequal. Appl., 2018 (2018), 1–24. https://doi.org/10.1186/s13660-018-1860-2 doi: 10.1186/s13660-018-1860-2
    [2] B. Yu, C. Y. Luo, T. S. Du, On the refinements of some important inequalities via (p,q)-calculus and their applications, J. Inequal. Appl., 2021 (2021), 1–26. https://doi.org/10.1186/s13660-021-02617-8 doi: 10.1186/s13660-021-02617-8
    [3] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9
    [4] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 1–13. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121
    [5] M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, M. A. Zahid, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Diff. Equat., 2021 (2021), 1–26. https://doi.org/10.1186/s13662-020-03195-7 doi: 10.1186/s13662-020-03195-7
    [6] W. Sun, Q. Liu, Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications, Math. Method. Appl. Sci., 43 (2020), 5776–5787. https://doi.org/10.1002/mma.6319 doi: 10.1002/mma.6319
    [7] T. Zhou, Z. Yuan, T. Du, On the fractional integral inclusions having exponential kernels for interval-valued convex functions, Math. Sci., 17 (2023), 107–120. https://doi.org/10.1007/s40096-021-00445-x doi: 10.1007/s40096-021-00445-x
    [8] W. Sun, On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals, Quaest. Math., 42 (2019), 1159–1183. https://doi.org/10.2989/16073606.2018.1509242 doi: 10.2989/16073606.2018.1509242
    [9] D. Shi, G. Farid, B. Younis, H. A. Zinadah, M. Anwar, A unified representation of q- and h-integrals and consequences in inequalities, Preprints.org, 2023, 2023051029. https://doi.org/10.20944/preprints202305.1029.v1 doi: 10.20944/preprints202305.1029.v1
    [10] G. A. Anastassiou, Intelligent mathematics: Computational analysis, Heidelberg: Springer, 2011.
    [11] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. https://doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64
    [12] A. Florea, C. P. Niculescu, A note on Ostrowski's inequality, J. Inequal. Appl., 2005 (2005), 1–10. https://doi.org/10.1155/JIA.2005.459 doi: 10.1155/JIA.2005.459
    [13] V. Kac, P. Cheung, Quantum calculus, Michigan: Edwards Brothers, 2000.
    [14] B. G. Pachpatte, Analytic inequalities, Paris: Atlantis Press, 2012. https://doi.org/10.2991/978-94-91216-44-2
    [15] P. Cerone, S. S. Dragomir, Mathematical inequalities, New York: CRC Press, 2011. https://doi.org/10.1201/b10483
    [16] N. Alp, C. C. Bilişik, M. Z. Sarıkaya, On q-Opial type inequality for quantum integral, Filomat, 33 (2019), 4175–4184. https://doi.org/10.2298/FIL1913175A doi: 10.2298/FIL1913175A
    [17] G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Prob. Eng., 2021 (2021), 1–18. https://doi.org/10.1155/2021/6667226 doi: 10.1155/2021/6667226
    [18] D. Chen, M. Anwar, G. Farid, W. Bibi, Inequalities for q-h-integrals via h-convex and m-convex functions, Symmetry, 15 (2023), 666. https://doi.org/10.3390/sym15030666 doi: 10.3390/sym15030666
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1503) PDF downloads(83) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog