Let $ a, n $ be positive integers and let $ p $ be a prime number. Let $ \mathbb F_q $ be the finite field with $ q = p^a $ elements. Let $ \{a_i\}_{i = 1}^\infty $ be an arbitrary given infinite sequence of elements in $ \mathbb F_q $ and $ a_1\neq 0 $. For each positive integer $ i $, let $ \{d_{i+j, i}\}_{j = 0}^\infty $ be an arbitrary given sequence of positive integers with $ d_{ii} $ coprime to $ q-1 $. For each integer $ n\ge 1 $, let $ N_n $, $ \bar N_n $ and $ \widetilde{N}_n $ denote the number of $ \mathbb F_q $-rational points of the hypersurfaces defined by the following three equations:
$ a_1x_1+\cdots+a_nx_n = b, $
$ x_1^2+\cdots+x_n^2 = b $
and
$ a_1 x_1^{d_{11}}+a_2 x_1^{d_{21}}x_2^{d_{22}}+ \cdots+a_n x_1^{d_{n1}}x_2^{d_{n2}} \cdots x_n^{d_{nn}} = b, $
respectively. In this paper, we show that the generating function $ \sum_{n = 1}^{\infty}N_nt^n $ is a rational function in $ t $. Moreover, we show that if $ p $ is an odd prime, then the generating functions $ \sum_{n = 1}^{\infty}\bar N_nt^n $ and $ \sum_{n = 1}^{\infty}\widetilde{N}_nt^n $ are both rational functions in $ t $. Moreover, we present the explicit rational expressions of $ \sum_{n = 1}^{\infty}N_nt^n $, $ \sum_{n = 1}^{\infty}\bar N_nt^n $ and $ \sum_{n = 1}^{\infty}\widetilde{N}_nt^n $, respectively.
Citation: Lin Han, Guangyan Zhu, Zongbing Lin. On the rationality of generating functions of certain hypersurfaces over finite fields[J]. AIMS Mathematics, 2023, 8(6): 13898-13906. doi: 10.3934/math.2023711
Let $ a, n $ be positive integers and let $ p $ be a prime number. Let $ \mathbb F_q $ be the finite field with $ q = p^a $ elements. Let $ \{a_i\}_{i = 1}^\infty $ be an arbitrary given infinite sequence of elements in $ \mathbb F_q $ and $ a_1\neq 0 $. For each positive integer $ i $, let $ \{d_{i+j, i}\}_{j = 0}^\infty $ be an arbitrary given sequence of positive integers with $ d_{ii} $ coprime to $ q-1 $. For each integer $ n\ge 1 $, let $ N_n $, $ \bar N_n $ and $ \widetilde{N}_n $ denote the number of $ \mathbb F_q $-rational points of the hypersurfaces defined by the following three equations:
$ a_1x_1+\cdots+a_nx_n = b, $
$ x_1^2+\cdots+x_n^2 = b $
and
$ a_1 x_1^{d_{11}}+a_2 x_1^{d_{21}}x_2^{d_{22}}+ \cdots+a_n x_1^{d_{n1}}x_2^{d_{n2}} \cdots x_n^{d_{nn}} = b, $
respectively. In this paper, we show that the generating function $ \sum_{n = 1}^{\infty}N_nt^n $ is a rational function in $ t $. Moreover, we show that if $ p $ is an odd prime, then the generating functions $ \sum_{n = 1}^{\infty}\bar N_nt^n $ and $ \sum_{n = 1}^{\infty}\widetilde{N}_nt^n $ are both rational functions in $ t $. Moreover, we present the explicit rational expressions of $ \sum_{n = 1}^{\infty}N_nt^n $, $ \sum_{n = 1}^{\infty}\bar N_nt^n $ and $ \sum_{n = 1}^{\infty}\widetilde{N}_nt^n $, respectively.
[1] | A. Adolphson, S. Sperber, $p$-Adic estimates for exponential sums and the theorem of Chevalley-Warning, Ann. Sci. Ecole Norm. Sup., 20 (1987), 545–556. https://doi.org/10.24033/asens.1543 doi: 10.24033/asens.1543 |
[2] | A. Adolphson, S. Sperber, $p$-Adic estimates for exponential sums, In: F. Baldassarri, S. Bosch and B. Dwork (eds) p-adic analysis (Trento, 1989), 11-22, Lecture Notes in Math., 1454, Springer, Berlin, Heidelberg, 1990. https://doi.org/10.1007/BFb0091132 |
[3] | J. Ax, Zeroes of polynomials over finite fields, Amer. J. Math., 86 (1964), 255–261. https://doi.org/10.2307/2373163 doi: 10.2307/2373163 |
[4] | L. Carlitz, Pairs of quadratic equations in a finite field, Amer. J. Math., 76 (1954), 137–154. https://doi.org/10.2307/2372405 doi: 10.2307/2372405 |
[5] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5 |
[6] | E. Cohen, Congruence representations in algebraic number field, Trans. Amer. Math. Soc., 75 (1953), 444–470. https://doi.org/10.1090/S0002-9947-1953-0059308-X doi: 10.1090/S0002-9947-1953-0059308-X |
[7] | Y. L. Feng, S. F. Hong, Improvements of $p$-adic estimates of exponential sums, Proc. Amer. Math. Soc., 150 (2022), 3687–3698. https://doi.org/10.1090/proc/15995 doi: 10.1090/proc/15995 |
[8] | J. H. Hodges, Representations by bilinear forms in a finite field, Duke Math. J., 22 (1955), 497–509. https://doi.org/10.1215/S0012-7094-55-02256-0 doi: 10.1215/S0012-7094-55-02256-0 |
[9] | S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. https://doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354 |
[10] | S. N. Hu, S. F. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. https://doi.org/10.1016/j.jnt.2015.04.006 doi: 10.1016/j.jnt.2015.04.006 |
[11] | L. K. Hua, H. S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci., 35 (1949), 94–99. https://doi.org/10.1073/pnas.35.2.94 doi: 10.1073/pnas.35.2.94 |
[12] | J. R. Joly, Equations et varietes algebriques sur un corps fini, Enseign. Math., 19 (1973), 1–117. Available from: https://mathscinet.ams.org/mathscinet/search/publdoc.html. |
[13] | R. Lidl, H. Niederreiter, Finite fields, Encyclopedia Math. Appl., vol. 20, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511525926 |
[14] | G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. https://doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4 |
[15] | Q. Sun, On diagonal equations over finite fields, Finite Fields Appl., 3 (1997), 175–179. https://doi.org/10.1006/ffta.1996.0173 doi: 10.1006/ffta.1996.0173 |
[16] | D. Q. Wan, Zeros of diagonal equations over finite fields, Proc. Amer. Math. Soc., 103 (1988), 1049–1052. https://doi.org/10.1090/S0002-9939-1988-0954981-2 doi: 10.1090/S0002-9939-1988-0954981-2 |
[17] | W. S. Wang, Q. Sun, The number of solutions of certain equations over a finite field, Finite Fields Appl., 11 (2005), 182–192. https://doi.org/10.1016/j.ffa.2004.06.004 doi: 10.1016/j.ffa.2004.06.004 |
[18] | A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55 (1949), 497–508. https://doi.org/10.1090/S0002-9904-1949-09219-4 doi: 10.1090/S0002-9904-1949-09219-4 |
[19] | J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. https://doi.org/10.1016/0022-314X(92)90091-3 doi: 10.1016/0022-314X(92)90091-3 |
[20] | J. Wolfmann, New results on diagonal equations over finite fields from cyclic codes, Finite fields: Theory, Applications, and Algorithms, Contemp. Math., 168 (1994), 387–395. http://dx.doi.org/10.1090/conm/168 doi: 10.1090/conm/168 |
[21] | J. Y. Zhao, Y. L. Feng, S. F. Hong, C. X. Zhu, On the number of zeros of diagonal quartic forms over finite fields, Forum Math., 34 (2022), 385–405. https://doi.org/10.1515/forum-2021-0196 doi: 10.1515/forum-2021-0196 |
[22] | C. X. Zhu, Y. L. Feng, S. F. Hong, J. Y. Zhao, On the number of zeros to the equation $f(x_1)+\cdots+f(x_n) = a$ over finite fields, Finite Fields Appl., 76 (2021), 101922. https://doi.org/10.1016/j.ffa.2021.101922 doi: 10.1016/j.ffa.2021.101922 |
[23] | G. Y. Zhu, S. A. Hong, On the number of rational points of certain algebraic varieties over finite fields, Forum Math., 35 (2023), in press. https://doi.org/10.1515/forum-2022-0324 doi: 10.1515/forum-2022-0324 |