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Abstract: Let a, n be positive integers and let p be a prime number. Let Fq be the finite field with
q = pa elements. Let {ai}

∞
i=1 be an arbitrary given infinite sequence of elements in Fq and a1 , 0. For

each positive integer i, let {di+ j,i}
∞
j=0 be an arbitrary given sequence of positive integers with dii coprime

to q − 1. For each integer n ≥ 1, let Nn, N̄n and Ñn denote the number of Fq-rational points of the
hypersurfaces defined by the following three equations:

a1x1 + · · · + anxn = b,

x2
1 + · · · + x2

n = b

and
a1xd11

1 + a2xd21
1 xd22

2 + · · · + anxdn1
1 xdn2

2 · · · x
dnn
n = b,

respectively. In this paper, we show that the generating function
∑∞

n=1 Nntn is a rational function in t.
Moreover, we show that if p is an odd prime, then the generating functions

∑∞
n=1 N̄ntn and

∑∞
n=1 Ñntn

are both rational functions in t. Moreover, we present the explicit rational expressions of
∑∞

n=1 Nntn,∑∞
n=1 N̄ntn and

∑∞
n=1 Ñntn, respectively.
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1. Introduction

Let a and n be positive integers and let p be a prime number. Let Fq be the finite field with q = pa

elements and let F∗q := Fq \ {0} be its multiplicative group. Let f (x1, ..., xn) be a polynomial over Fq.
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We set Nn( f = 0) to be the number of rational points (x1, ..., xn) ∈ Fn
q on the hypersurface defined by

the equation f (x1, ..., xn) = 0. That is, we have

Nn( f = 0) := ]{(x1, ..., xn) ∈ Fn
q| f (x1, ..., xn) = 0}.

It is well known that there exists an exact formula (see, for example, pp. 275-289 of [13]) for the
number Nn( f = 0) when deg( f ) ≤ 2. Moreover, finding the formula for Nn( f = 0) and related topic has
attracted lots of authors for many years (see, for instance, [1, 2, 4, 6, 7, 8, 10, 22]). Generally speaking,
it is difficult to present an explicit formula for Nn( f = 0). There are many authors investigating the
nonnegative integer Nn( f = 0) by considering the rationality of the generating function of the sequence
{Nn( f = 0)}∞n=1.

Let Z+ denote the set of positive integers. For the diagonal hypersurface

a1x1
d1 + · · · + anxn

dn = b, ai ∈ F
∗
q, b ∈ Fq, di ∈ Z

+,

much work has been done to find the number of its Fq-rational points (see, for example, [3, 11, 12, 15,
16, 18, 19, 20, 23]). For any z ∈ Fq and any e ∈ Z+, we denote by

N(e)
n (z) := Nn(x1

e + · · · + xn
e = z)

the number of Fq-rational points of e-th diagonal hypersurface xe
1 + · · · + xe

n = z. In 1977, Chowla,
Cowles and Cowles [5] proved that the generating function

∑∞
n=1 N(3)

n (0)tn is a rational function of t.
In 1979, Myerson [14] found that the generating function

∑∞
n=1 N(4)

n (0)tn is a rational function of t. In
2021, Hong and Zhu [9] proved that the generating function

∑∞
n=1 N(3)

n (z)tn is rational and also gave
its explicit rational expression. In 2022, Zhao, Feng, Hong and Zhu [21] studied the rationality of the
generating function of the sequence {N(4)

n (z)}∞n=1, and proved that
∑∞

n=1 N(4)
n (z)tn is a rational function in

t and gave its explicit expression.
Let {ai}

∞
i=1 be an arbitrary given infinite sequence of elements in Fq and a1 , 0. For each positive

integer i, let {di+ j,i}
∞
j=0 be an arbitrary given sequence of positive integers with dii coprime to q − 1.

For each integer n ≥ 1, let Nn, N̄n and Ñn denote the number of rational points (x1, ..., xn) ∈ Fn
q of the

hypersurfaces defined by the following three equations:

a1x1 + · · · + anxn = b,

x2
1 + · · · + x2

n = b

and

a1x1
d11 + a2xd21

1 xd22
2 + · · · + anxdn1

1 · · · x
dnn
n = b, (1.1)

respectively. The exact formulas of Nn and N̄n can be found in [11]. Furthermore, Wang and Sun [17]
studied the equation (1.1), and gave the explicit formula of Ñn under the restriction of p being odd.
Although the explicit formulas for Nn, N̄n and Ñn are known, it is unclear whether or not the generating
functions of the three sequences {Nn}

∞
n=1, {N̄n}

∞
n=1 and {Ñn}

∞
n=1 are rational. If the answer is positive, can

we give their explicit expressions?
In this paper, we mainly explore the above mentioned problem. In fact, we will show that the

generating function
∑∞

n=1 Nntn is a rational function in t. Furthermore, if p is an odd prime, then we
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show that the generating functions
∑∞

n=1 N̄ntn and
∑∞

n=1 Ñntn are rational functions in t. In other words,
the main results of this paper can be stated as follows.

Theorem 1.1 Let Fq be the finite field of q elements and b ∈ Fq. Let {ai}
∞
i=1 be an arbitrary given infinite

sequence of elements in Fq and a1 ∈ F
∗
q. Let Nn denote the number of rational points (x1, ..., xn) ∈ Fn

q

on the hyperplane a1x1 + · · · + anxn = b. Then the generating function
∑∞

n=1 Nntn is a rational function
in t and

∞∑
n=1

Nntn =
t

1 − qt
.

Theorem 1.2 Let Fq be the finite field of q elements and odd characteristic. For any b ∈ Fq, let N̄n

denote the number of rational points (x1, ..., xn) ∈ Fn
q on the hypersurface

x2
1 + · · · + x2

n = b.

Then the generating function
∑∞

n=1 N̄ntn is a rational function in t. Moreover, one has

∞∑
n=1

N̄ntn =
t + qt2

1 − (qt)2 +
tη(b) + v(b)t2η(−1)

1 − qt2η(−1)
,

where η is the quadratic character of Fq and the integer-valued function v on Fq is defined by

v(b) :=

q − 1, i f b = 0,
−1, i f b ∈ F∗q.

(1.2)

Theorem 1.3 Let Fq be the finite field of q elements and odd characteristic and b ∈ Fq. Let {ai}
∞
i=1 be

an arbitrary given infinite sequence of elements in F∗q. For each positive integer i, let {di+ j,i}
∞
j=0 be an

arbitrary given sequence of positive integers with dii coprime to q − 1. Let Ñn represent the number of
rational points (x1, ..., xn) ∈ Fn

q on the hypersurface

a1xd11
1 + a2xd21

1 xd22
2 + · · · + anxdn1

1 xdn2
2 · · · x

dnn
n = b.

Then the generating function
∑∞

n=1 Ñntn is a rational function in t. Furthermore, one has

∞∑
n=1

Ñntn =


t(1 + qt)

(1 + t)(1 − qt)
, i f b = 0,

t
(1 + t)(1 − qt)

, i f b , 0.

This paper is organized as follows. We present in Section 2 several preliminary lemmas that are
needed in the proofs of Theorems 1.1 to 1.3. Finally, Section 3 is devoted to the proofs of Theorems
1.1 to 1.3.
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2. Auxiliary lemmas

In this section, we present three lemmas which are needed in the proofs of Theorems 1.1 to 1.3.

Lemma 2.1 [13] Let Fq be the finite field with q elements. Let Nn denote the number of rational points
(x1, ..., xn) ∈ Fn

q on the hyperplane
a1x1 + · · · + anxn = b

with a1, ..., an ∈ F
∗
q and b ∈ Fq. Then Nn = qn−1.

Lemma 2.2 [13] Let Fq be the finite field with q elements and q being odd. Let N̄n(a1, ..., an) denote the
number of rational points (x1, ..., xn) ∈ Fn

q on the hypersurface

a1x2
1 + · · · + anx2

n = b

with a1, ..., an ∈ F
∗
q and b ∈ Fq. Then

N̄n(a1, ..., an) =

qn−1 + v(b)q(n−2)/2η((−1)n/2a1 · · · an) i f 2|n,
qn−1 + q(n−1)/2η((−1)(n−1)/2ba1 · · · an) i f 2 - n,

where v(b) is defined as in (1.2) and η is the quadratic character of Fq.

Lemma 2.3 [17] Let Fq be the finite field of q elements and odd characteristic and b ∈ Fq. Let {ai}
∞
i=1

be an arbitrary given infinite sequence of elements in F∗q. For any positive integer i, let

{di+ j,i}
∞
j=0

be an arbitrary given sequence of positive integers with dii being coprime to q − 1. Let Ñn represent
the number of rational points (x1, ..., xn) ∈ Fn

q on the hypersurface

a1xd11
1 + a2xd21

1 xd22
2 + · · · + anxdn1

1 xdn2
2 · · · x

dnn
n = b.

Then

Ñn =


(−1)n−1 + 2

n−1∑
k=1

(−1)n−(k+1)qk i f b = 0,
n−1∑
k=0

(−1)n−(k+1)qk i f b , 0.

3. Proofs of Theorems 1.1 to 1.3

In this section, we present the proofs of Theorems 1.1 to 1.3. It is well known that the following
identity on the formal power series is true:

∞∑
i=0

ui =
1

1 − u
.
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This fact will be used freely in what follows.

First of all, we show Theorem 1.1.

Proof of Theorem 1.1. At first, by Lemma 2.1, one has

Nn = qn−1.

Then we deduce that

∞∑
n=1

Nntn

=

∞∑
n=1

qn−1tn

=t
∞∑

n=0

(qt)n

=
t

1 − qt

as desired. That is, the generating function
∑∞

n=1 Nntn is a rational function in t.
This concludes the proof of Theorem 1.1. �

Consequently, we present the proof of Theorem 1.2.

Proof of Theorem 1.2. First of all, from Lemma 2.2 we can derive that for any positive integer n, one
has

N̄n = qn−1 + v(b)q(n−2)/2η((−1)n/2) (3.1)

if 2|n, and

N̄n = qn−1 + q(n−1)/2η((−1)(n−1)/2b) (3.2)

if 2 - n.
On the one hand, we have

∞∑
n=1

N̄ntn

=

∞∑
n=1

(N̄2nt2n + N̄2n−1t2n−1)

=

∞∑
n=1

N̄2nt2n +

∞∑
n=1

N̄2n−1t2n−1. (3.3)
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On the other hand, using (3.1) and (3.2), one arrives at
∞∑

n=1

N̄2nt2n

=

∞∑
n=1

(
q2n−1 + v(b)q

2n−2
2 η((−1)

2n
2 )

)
t2n

=

∞∑
n=1

q2n−1t2n + v(b)
∞∑

n=1

qn−1η((−1)n)t2n

=

∞∑
n=1

q−1q2nt2n + v(b)
∞∑

n=1

q−1qnη((−1)n)(t2)n

=
1
q

∞∑
n=1

(qt)2n +
1
q

v(b)
∞∑

n=1

(qt2η(−1))n

=
qt2

1 − (qt)2 +
v(b)t2η(−1)
1 − qt2η(−1)

(3.4)

and
∞∑

n=1

N̄2n−1t2n−1

=

∞∑
n=1

(
q2n−2 + q

(2n−2)
2 η((−1)

2n−2
2 b)

)
t2n−1

=

∞∑
n=1

q2n−2t2n−1 +

∞∑
n=1

qn−1η((−1)n−1b)t2n−1

=t
∞∑

n=1

(qt)2n−2 +
η(b)

qtη(−1)

∞∑
n=1

(qt2η(−1))n

=
t

1 − (qt)2 +
tη(b)

1 − qt2η(−1)
. (3.5)

Finally, putting (3.4) and (3.5) into (3.3) gives us that
∞∑

n=1

N̄ntn =
t + qt2

1 − (qt)2 +
tη(b) + v(b)t2η(−1)

1 − qt2η(−1)

as required. Thus the generating function
∑∞

n=1 N̄ntn is a rational function in t.
This completes the proof of Theorem 1.2. �

In concluding this paper, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. At first, by using Lemma 2.3, we know that

Ñn = (−1)n−1 + 2
n−1∑
k=1

(−1)n−(k+1)qk (3.6)
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if b = 0, and

Ñn =

n−1∑
k=0

(−1)n−(k+1)qk (3.7)

if b , 0. Now let us divide the proof into the following two cases.
Case 1. b = 0. Clearly, one has Ñ1 = 1. Then by (3.6) one has

∞∑
n=1

Ñntn

=t +

∞∑
n=2

(
(−1)n−1 + 2

n−1∑
k=1

(−1)n−(k+1)qk
)
tn

=

∞∑
n=1

(−1)n−1tn + 2
∞∑

n=2

n−1∑
k=1

(−1)n−(k+1)qktn

= −

∞∑
n=1

(−t)n + 2
∞∑

k=1

∞∑
n=k+1

(−1)n−(k+1)qktn

=
t

1 + t
− 2

∞∑
k=1

(−q)k
∞∑

n=k+1

(−t)n

=
t

1 + t
− 2

∞∑
k=1

(−q)k (−t)k+1

1 + t

=
t

1 + t
+

2t
1 + t

∞∑
k=1

(qt)k

=
t

1 + t
+

2qt2

(1 + t)(1 − qt)

=
t(1 + qt)

(1 + t)(1 − qt)
.

That is, the generating function
∑∞

n=1 Ñntn is a rational function in t when b = 0.
Case 2. b , 0. Then from (3.7), we derive that

∞∑
n=1

Ñntn

=

∞∑
n=1

n−1∑
k=0

(−1)n−(k+1)qktn

= −

∞∑
n=1

(−t)n
n−1∑
k=0

(−q)k

= −

∞∑
n=1

(−t)n 1 − (−q)n

1 − (−q)

=
−1

1 + q

∞∑
n=1

(−t)n(1 − (−q)n)
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13905

=
−1

1 + q

∞∑
n=1

(−t)n +
1

1 + q

∞∑
n=1

(tq)n

=
−1

1 + q
·
−t

1 + t
+

1
1 + q

·
tq

1 − tq

=
1

1 + q

( t
1 + t

+
tq

1 − tq

)
=

t − t2q + tq + t2q
(1 + q)(1 + t)(1 − tq)

=
t(1 + q)

(1 + q)(1 + t)(1 − tq)

=
t

(1 + t)(1 − qt)
as one expects. So the generating function

∑∞
n=1 Ñntn is a rational function in t when b , 0.

This finishes the proof of Theorem 1.3. �
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