Research article Special Issues

Combinative distance-based assessment method for decision-making with 2-tuple linguistic q-rung picture fuzzy sets

  • Received: 25 February 2023 Revised: 31 March 2023 Accepted: 05 April 2023 Published: 12 April 2023
  • Multi-criteria group decision-making (MCGDM) approaches have a substantial effect on decision-making in a range of critical sectors, including science, business, and real-life research. These strategies also efficiently assist researchers in resolving challenges that may arise throughout their study activity. The current work's major purpose is to research and develop the combinative distance-based assessment (CODAS) approach by employing 2-tuple linguistic q-rung picture fuzzy sets (2TLq-RPFSs) as a background. The CODAS technique computes the distances from the negative ideal solutions and ranks the alternatives in increasing order. To compute the normal weights of attributes, the entropy weighting information process is used. Furthermore, two aggregation operators, namely the 2-tuple linguistic q-rung picture fuzzy Einstein weighted average and the 2-tuple linguistic q-rung picture fuzzy Einstein order weighted average, are introduced. Our inspiration for employing the notion of 2TLq-RPFSs is the ability of q-RPFSs to support a wide range of information and the significant qualities of 2-tuple linguistic term sets to handle qualitative data. Congested transportation networks may be made more efficient by leveraging digital transformation. Real-time traffic management is one solution to the problem of road congestion. As a result of connected autonomous vehicle (CAV) advances, the benefits of real-time traffic management systems have grown dramatically. CAVs can help manage traffic by acting as enforcers. To complement the extended approach, the proposed technique is used to select the best alternative for a real-time traffic management system. The performance of the suggested technique is validated using scenario analysis. The results show that the suggested strategy is efficient and relevant to real-world situations.

    Citation: Ayesha Khan, Uzma Ahmad, Adeel Farooq, Mohammed M. Ali Al-Shamiri. Combinative distance-based assessment method for decision-making with 2-tuple linguistic q-rung picture fuzzy sets[J]. AIMS Mathematics, 2023, 8(6): 13830-13874. doi: 10.3934/math.2023708

    Related Papers:

    [1] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [2] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [3] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [4] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [5] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [6] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [7] Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079
    [8] Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043
    [9] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [10] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
  • Multi-criteria group decision-making (MCGDM) approaches have a substantial effect on decision-making in a range of critical sectors, including science, business, and real-life research. These strategies also efficiently assist researchers in resolving challenges that may arise throughout their study activity. The current work's major purpose is to research and develop the combinative distance-based assessment (CODAS) approach by employing 2-tuple linguistic q-rung picture fuzzy sets (2TLq-RPFSs) as a background. The CODAS technique computes the distances from the negative ideal solutions and ranks the alternatives in increasing order. To compute the normal weights of attributes, the entropy weighting information process is used. Furthermore, two aggregation operators, namely the 2-tuple linguistic q-rung picture fuzzy Einstein weighted average and the 2-tuple linguistic q-rung picture fuzzy Einstein order weighted average, are introduced. Our inspiration for employing the notion of 2TLq-RPFSs is the ability of q-RPFSs to support a wide range of information and the significant qualities of 2-tuple linguistic term sets to handle qualitative data. Congested transportation networks may be made more efficient by leveraging digital transformation. Real-time traffic management is one solution to the problem of road congestion. As a result of connected autonomous vehicle (CAV) advances, the benefits of real-time traffic management systems have grown dramatically. CAVs can help manage traffic by acting as enforcers. To complement the extended approach, the proposed technique is used to select the best alternative for a real-time traffic management system. The performance of the suggested technique is validated using scenario analysis. The results show that the suggested strategy is efficient and relevant to real-world situations.



    The classical Hermite-Hadamard inequality is one of the most well-established inequalities in the theory of convex functions with geometrical interpretation and it has many applications. This inequality may be regarded as a refinement of the concept of convexity. Hermite-Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable refinements and generalizations have been studied [1,2].

    The importance of the study of set-valued analysis from a theoretical point of view as well as from their applications is well known. Many advances in set-valued analysis have been motivated by control theory and dynamical games. Optimal control theory and mathematical programming were an engine driving these domains since the dawn of the sixties. Interval analysis is a particular case and it was introduced as an attempt to handle interval uncertainty that appears in many mathematical or computer models of some deterministic real-world phenomena.

    Furthermore, a few significant inequalities like Hermite-Hadamard and Ostrowski type inequalities have been established for interval valued functions in recent years. In [3,4], Chalco-Cano et al. established Ostrowski type inequalities for interval valued functions by using Hukuhara derivatives for interval valued functions. In [5], Román-Flores et al. established Minkowski and Beckenbach's inequalities for interval valued functions. For other related results we refer to the readers [6].

    In this paper, we establish Hermite-Hadamard type inequalities and He's inequality for interval-valued exponential type pre-invex functions in the Riemann-Liouville interval-valued fractional operator settings.

    We begin with recalling some basic concepts and notions in the convex analysis.

    Let the space of all intervals of is c and Λc given by

    Λ1=[Λ,Λ]={v|Λ<v<Λ},Λ,Λ.

    Various binary operations are given as follows [7]:

    Scalar multiplication: τ,

    τ.Λ1={[τΛ,τΛ],if0τ,0,ifτ=0,[τΛ,τΛ],ifτ0.

    Difference, addition, product and reciprocal for Λ1,Λ2c are respectively given by

    Λ1Λ2=[Λ1,Λ1][Λ2,Λ2]=[Λ1Λ2,Λ1Λ2],Λ1+Λ2=[Λ1,Λ1]+[Λ2,Λ2]=[Λ1+Λ2,Λ1+Λ2],Λ1×Λ2=[min{Λ1Λ2,Λ1Λ2,Λ1Λ2,Λ1Λ2},max{Λ1Λ2,Λ1Λ2,Λ1Λ2,Λ1Λ2}]={uv|uΛ1,vΛ2},1Λ={1v1|0v1Λ}=[1Λ,1Λ],Λ1.1Λ2={u.1v|uΛ1,0vΛ2}=[Λ1.1Λ2,Λ1.1Λ2].

    Let Λ,+ΛandΛ denote the collection of all closed intervals of , the collection of all positive intervals of and the collection of all negative intervals of respectively. In this paper, we examine a few algebraic properties of interval arithmetic.

    Definition 2.1. [7] A mapping Ω is called an interval-valued function of υ on [a1,b1] if it assigns a nonempty interval to every v[a1,b1], that is

    Ω(v)=[Ω(v),Ω(v)], (2.1)

    where Ω(υ)andΩ(υ) are both real valued functions.

    Consider any finite ordered subset be the partition of [a1,b1], that is

    :a1=a1,...,an=b1.

    The mesh of is

    mesh()=max{ai+1ai;i=1,...,n}.

    The Riemann sum of Ω:[a1,b1]Λ can be defined by

    ˜S(Ω,,c)=Σni=1Ω(di)(ai+1ai),

    where mesh()<c.

    Definition 2.2. [8] A mapping Ω:[a1,b1]Λ is called an interval-Riemann integrable on [a1,b1]ifΛΛ such that for every δ>0 satisfying

    d(˜S(Ω,,c),Λ)<δ,

    we have

    Λ1=(IR)b1a1Ω(v)dv. (2.2)

    Lemma 2.1. [9] Let Ω:[a1,b1]Λ be an interval-valued function as in (2.1), then it is interval-Riemann integrable if and only if

    (IR)b1a1Ω(v)dv=[(R)b1a1Ω(v)dv,(R)b1a1Ω(v)dv].

    In simple words, Ω is interval-Riemann integrable if and only if Ω(v)andΩ(v) are both Riemann integrable functions.

    Definition 2.3. [10] Let ΩL1[a1,b1], then the Riemann-Liouville fractional integrals of order m>0 with 0a1 are defined by

    Ima+1Ω(v)=1Γ(m)va1(vr)m1Ω(r)dr,v>a1, (2.3)
    Imb1Ω(v)=1Γ(m)b1v(rv)m1Ω(r)dr,v<b1. (2.4)

    Definition 2.4. [11,12] Let Ω:[a1,b1]Λ be an interval-valued, interval-Riemann integrable function as in (2.1), then the interval Riemann-Liouville fractional integrals of order m>0 with 0a1 are defined by

    Ima+1Ω(v)=1Γ(m)(IR)va1(vr)m1Ω(r)dr,v>a1, (2.5)
    Imb1Ω(v)=1Γ(m)(IR)b1v(rv)m1Ω(r)dr,v<b1. (2.6)

    Corollary 2.1. [12] Let Ω:[a1,b1]Λ be an interval-valued function as in (2.1) such that Ω(v)andΩ(v) are Riemann integrable functions, then

    Ima+1Ω(v)=[Ima+1Ω(v),Ima+1Ω(v)],
    Imb1Ω(v)=[Imb1Ω(v),Imb1Ω(v)].

    Definition 2.5. [13] A set Λn with respect to a vector function η:n×nn is called an invex set if

    b1+τη(a1,b1)Λ,a1,b1Λ,τ1[0,1].

    Definition 2.6. [13] A function Ω on the invex set Λ with respect to a vector function η:Λ×Λn is called pre-invex function if

    Ω(b1+τη(a1,b1))(1τ)Ω(b1)+τΩ(a1),a1,b1Λ,τ1[0,1]. (2.7)

    Lemma 2.2. [14,15] If Λ is open and η:Λ×Λ, then a1,b1Λ,τ,τ1,τ2[0,1], we have

    η(b1,b1+τη(a1,b1))=τη(a1,b1), (2.8)
    η(a1,b1+τη(a1,b1))=(1τ)η(a1,b1), (2.9)
    η(b1+τ2η(a1,b1),b1+τ1η(a1,b1))=(τ2τ1)η(a1,b1). (2.10)

    In [16], Noor presented Hermite-Hadamard-inequality for pre-invex function, as follows:

    Ω(2a1+η(b1,a1)2)1η(b1,a1)a1+η(b1,a1)a1Ω(v)dvΩ(a1)+Ω(b1)2.

    Definition 2.7. [15] Let us consider an interval-valued function Ω on the set Λ, then Ω is pre-invex interval valued function with respect to η on an invex set Λn with respect to a vector function η:Λ×Λn if

    Ω(b1+τ1η(a1,b1))(1τ1)Ω(b1)+τ1Ω(a1),a1,b1Λ,τ1[0,1]. (2.11)

    Taking motivation from the exponential type convexity proposed in [17], we introduce the following notion:

    Definition 2.8. A function Ω on the invex set Λ is called exponential-type pre-invex function with respect to a vector function η:Λ×Λn if

    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1]. (2.12)

    It is important to note that a pre-invex function need not to be convex function. For example, the function f(x)=|x| is not a convex function but it is a pre-invex function with respect to η, where

    η(v,u)={uv,ifu0,v0,v0,u0,vu,otherwise.

    Theorem 2.1. Let Ω:[a1,b1] be an exponential-type pre-invex function with respect to a vector function η:Λ×Λn. If a1<b1 and ΩL[a1,b1], then we have

    12(e121)Ω(a1+12η(b1,a1))1η(b1,a1)a1+η(b1,a1)a1Ω(v)dv(e2)[Ω(a1)+Ω(b1)].

    Proof. At first, from exponential-type-pre-invexity of Ω, we have

    Ω(a1+12η(b1,a1))=Ω(12[b1+τ1η(a1,b1)]+12[a1+τ1η(b1,a1)])(e121)[Ω(b1+τ1η(a1,b1))+Ω(a1+τ1η(b1,a1))].

    Integrating the above inequality with respect to τ1[0,1] yields

    Ω(a1+12η(b1,a1))(e121)(10Ω(b1+τ1η(a1,b1))dτ1+10Ω(a1+τ1η(b1,a1))dτ1)=2(e121)η(b1,a1)a1+η(b1,a1)a1Ω(v)dv.

    Now, taking v=b1+τ1η(a1,b1) gives

    1η(b1,a1)a1+η(b1,a1)a1Ω(v)dv=10Ω(b1+τ1η(a1,b1))dτ110{(eτ11)Ω(a1)+(e(1τ1)1)Ω(b1)}dτ1=(e2)[Ω(a1)+Ω(b1)].

    This completes the proof.

    By merging the concepts of pre-invexity and exponential type pre-invexity, we propose the following notion:

    Definition 2.9. Let Λn be an invex set with respect to a vector function η:Λ×Λn. The interval valued function Ω on the set Λ is exponential-type pre-invex interval valued function with respect to η if

    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1]. (2.13)

    Remark 2.1. In Definition 2.9, by taking h(τ1)=eτ11, where h:[0,1][a1,b1] and h0, then we get h-pre-invex interval valued function with respect to η, that is

    Ω(b1+τ1η(a1,b1))h(1τ1)Ω(b1)+h(τ1)Ω(a1),a1,b1Λ,τ1[0,1]. (2.14)

    Remark 2.2. Let Λn be an invex set with respect to a vector function η:n×nn. The interval valued function Ω on the set Λ is exponential-type-pre-invex function with respect to η if and only if Ω,Ω are exponential-type pre-invex functions with respect to η, that is

    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1], (2.15)
    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1]. (2.16)

    Remark 2.3. If Ω(v)=Ω(v), then we get (2.12).

    Remark 2.4. Since τ1eτ11 and 1τ1e1τ11 for all τ1[0,1], so every nonnegative pre-invex interval valued function with respect to η is also exponential-type pre-invex interval valued function with respect to η.

    In this section, we establish fractional Hermite-Hadamard type inequality for interval-valued exponential type pre-invex. The family of Lebesgue measurable interval-valued functions is denoted by L([v1,v2],0).

    Theorem 3.1. Let Λ be an open invex set with respect to η:Λ×Λ and a1,b1Λ with a1<a1+η(b1,a1). If Ω:[a1,a1+η(b1,a1)] is an exponential type pre-invex interval-valued function such that ΩL[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)

    1(e121)Ω(c1+12η(d1,c1))Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]mP(Ω(c1+η(d1,c1))+Ω(c1)), (3.1)

    where

    P=1(m+1)(1)m[(em+e)(1)mΓ(m+1,1)+(m1)Γ(m+1,1)+((eme)(1)m+m+1)Γ(m+1)+2(1)m]. (3.2)

    Proof. Since Ω is an exponential type pre-invex interval-valued function, so

    1(e121)Ω(a1+12η(b1,a1))[Ω(a1)+Ω(b1)].

    Taking a1=c1+(1τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives

    1(e121)Ω(c1+(1τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1τ1)η(d1,c1)))[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))],

    implies

    1(e121)Ω(c1+12η(d1,c1))[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))].

    By multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1, we get

    (IR)10τm111(e121)Ω(c1+12η(d1,c1))dτ1(IR)10τm11[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]dτ1,
    (IR)10τm111(e121)Ω(c1+12η(d1,c1))dτ1=[(R)10τm111(e121)Ω(c1+12η(d1,c1))dτ1,(R)10τm111(e121)Ω(c1+12η(d1,c1))dτ1],
    (IR)10τm111(e121)Ω(c1+12η(d1,c1))dτ1=[1m(e121)Ω(c1+12η(d1,c1)),1m(e121)Ω(c1+12η(d1,c1))]=1m(e121)Ω(c1+12η(d1,c1)), (3.3)
    (IR)10τm11Ω(c1+(τ1)η(d1,c1))=[1ηm(d1,c1)(R)c1+(τ1)η(d1,c1)c(ic)m1Ω(i)di,1ηm(d1,c1)(R)c1+(τ1)η(d1,c1)c(ic)m1Ω(i)di],
    (IR)10τm11Ω(c1+(τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1),Im(c1+η(d1,c1))Ω(c1)]=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))Ω(c1). (3.4)

    Similarly

    (IR)10τm11Ω(c1+(1τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)),Imc+1Ω(c1+η(d1,c1))]=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)). (3.5)

    From (3.3)–(3.5), we get

    1m(e121)Ω(c1+12η(d1,c1))Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]. (3.6)

    Now, from the interval valued exponential type pre-invexity of Ω, we have

    Ω(c1+τ1η(d1,c1))=Ω(c1+η(d1,c1)+(1τ1)η(c1,c1+η(d1,c1)))(eτ11)Ω(c1+η(d1,c1))+(e(1τ1)1)Ω(c1). (3.7)

    Similarly

    Ω(c1+(1τ1)η(d1,c1))=Ω(c1+η(d1,c1)+(τ1)η(c1,c1+η(d1,c1)))(e(1τ1)1)Ω(c1+η(d1,c1))+(eτ11)Ω(c1). (3.8)

    Thus, by adding (3.7) and (3.8), we get

    Ω(c1+τ1η(d1,c1))+Ω(c1+(1τ1)η(d1,c1))[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1)).

    By multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1, we get

    (IR)10τm11Ω(c1+τ1η(d1,c1))dτ1+(IR)10τm11Ω(c1+(1τ1)η(d1,c1))dτ1(IR)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1.

    Now, from (3.2) we get

    (IR)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1=[(R)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1,(R)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1]=[P(Ω(c1+η(d1,c1))+Ω(c1)),P(Ω(c1+η(d1,c1))+Ω(c1))]=P(Ω(c1+η(d1,c1))+Ω(c1)). (3.9)

    Also from (3.4), (3.5) and (3.9), we get

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]P(Ω(c1+η(d1,c1))+Ω(c1)). (3.10)

    Combining (3.6) and (3.10), we get

    1(e121)Ω(c1+12η(d1,c1))Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]mP(Ω(c1+η(d1,c1))+Ω(c1)).

    Corollary 3.1. If Ω(v)=Ω(v), then (3.1) leads to the following fractional inequality for exponential type pre-invex function:

    1(e121)Ω(c1+12η(d1,c1))Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]mP(Ω(c1+η(d1,c1))+Ω(c1)).

    Theorem 3.2. Let Λ be an open invex set with respect to η:Λ×Λ and a1,b1Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)] are exponential type pre-invex interval-valued functions such that Ω,Ω1L[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)), (3.11)

    where

    P1=e2Γ(m)e2Γ(m,2)2m+2eΓ(m,1)+2Γ(m,1)2Γ(m)(1)m+Γ(m)Γ(m,2)(1)m2m2eΓ(m)+2m, (3.12)
    P2=eΓ(m,1)+Γ(m,1)(1)mΓ(m)(1)meΓ(m)+em+1m, (3.13)
    Υ1(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)], (3.14)

    and

    Υ2(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. (3.15)

    Proof. Since ΩandΩ1 are exponential type pre-invex interval-valued functions, so we have

    Ω(a1+τ1η(b1,a1))=Ω(a1+η(b1,a1)+(1τ1)η(a1,a1+η(b1,a1)))(eτ11)Ω(a1+η(b1,a1))+(e(1τ1)1)Ω(a1)

    and

    Ω1(a1+τ1η(b1,a1))=Ω1(a1+η(b1,a1)+(1τ1)η(a1,a1+η(b1,a1)))(eτ11)Ω1(a1+η(b1,a1))+(e(1τ1)1)Ω1(a1).

    Since Ω,Ω1+Λ, so

    Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))(eτ11)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(e(1τ1)1)2Ω(a1).Ω1(a1)+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. (3.16)

    Similarly, we have

    Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))(e(1τ1)1)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(eτ11)2Ω(a1).Ω1(a1)+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. (3.17)

    Adding (3.16) and (3.17) yields

    Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))[(e(1τ1)1)2+(eτ11)2][Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]+2(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))].

    From (3.14) and (3.15), we have

    Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))[(e(1τ1)1)2+(eτ11)2]Υ1(a1,a1+η(b1,a1))+2(eτ11)(e(1τ1)1)Υ2(a1,a1+η(b1,a1)).

    Multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1 gives

    (IR)10τm11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1+(IR)10τm11Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))dτ1(IR)10τm11[(e(1τ1)1)2+(eτ11)2]Υ1(a1,a1+η(b1,a1))dτ1+2(IR)10τm11(eτ11)(e(1τ1)1)Υ2(a1,a1+η(b1,a1))dτ1.

    So

    (IR)10τm11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))Ω(c1).Ω1(c1)

    and

    (IR)10τm11Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1)).

    From (3.12) and (3.13), we get

    (IR)10τm11[(e(1τ1)1)2+(eτ11)2]Υ1(a1,a1+η(b1,a1))dτ1=P1Υ1(a1,a1+η(b1,a1))

    and

    (IR)10τm11(eτ11)(e(1τ1)1)Υ2(a1,a1+η(b1,a1))dτ1=P2Υ2(a1,a1+η(b1,a1)).

    Thus,

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)).

    Corollary 3.2. If Ω(v)=Ω(v), then (3.11) leads to the following fractional inequality for exponential type pre-invex function:

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)).

    Theorem 3.3. Let Λ be an open invex set with respect to η:Λ×Λ and a1,b1Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)] are exponential type pre-invex interval-valued functions such that Ω,Ω1L[a1,a1+η(b1,a1)] and m>0, then from (3.12)–(3.15), we have (considering Lemma 2.2 holds)

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))Ω(c1).Ω1(c1)]]. (3.18)

    Proof. Since Ω is an exponential type pre-invex interval-valued function, so we have

    Ω(a1+12η(b1,a1))(e121)[Ω(a1)+Ω(b1)].

    Taking a1=c1+(1τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives

    Ω(c1+(1τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1τ1)η(d1,c1)))(e121)[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))],

    implies

    Ω(c1+12η(d1,c1))(e121)[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]. (3.19)

    Similarly

    Ω1(c1+12η(d1,c1))(e121)[Ω1(c1+(1τ1)η(d1,c1))+Ω1(c1+(τ1)η(d1,c1))]. (3.20)

    Multiplying (3.19) and (3.20) gives

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))+Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))]. (3.21)

    Since Ω,Ω1+Λ, are exponential type pre-invex interval-valued functions for τ1[0,1], so we have

    Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))(e(1τ1)1)2Ω(a1+η(b1,a1)).Ω1(a1)+(eτ11)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. (3.22)

    Similarly

    Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))(eτ11)2Ω(a1+η(b1,a1)).Ω1(a1)+(e(1τ1)1)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. (3.23)

    Adding (3.22) and (3.23) yields

    Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))[(eτ11)2+(e(1τ1)1)2](Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1)))+2(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)].

    Now from (3.21), we can write

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[[(eτ11)2+(e(1τ1)1)2]Υ2(a1,a1+η(b1,a1))+2(eτ11)(e(1τ1)1)Υ1(a1,a1+η(b1,a1))+Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))].

    Multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1 yields

    (IR)10τm11Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))dτ1(e121)2[(IR)10τm11[(eτ11)2+(e(1τ1)1)2]Υ2(a1,a1+η(b1,a1))dτ1+2(IR)10τm11(eτ11)(e(1τ1)1)Υ1(a1,a1+η(b1,a1))dτ1+(IR)10τm11Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))dτ1+(IR)10τm11Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))dτ1].

    Thus from (3.12)–(3.15), we get

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))Ω(c1).Ω1(c1)]].

    Corollary 3.3. If Ω(v)=Ω(v), then (3.18) leads to the following fractional inequality for exponential type pre-invex function:

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))Ω(c1).Ω1(c1)]].

    In this section, we establish Hermite-hadamard type inequality in the setting of the He's fractional derivatives introduced in [18].

    Definition 4.1. Let Ω be an L1 function defined on an interval [0,n1]. Then the k1-th He's fractional derivative of Ω(n1) is defined by

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1.

    The interval He's fractional derivative based on left and right end point functions can be defined by

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1=1Γ(ik1)didni1n10(τ1n)ik11[Ω(τ1),Ω(τ1)]dτ1,n>n1,

    where

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1,n>n1 (4.1)

    and

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1,n>n1. (4.2)

    Theorem 4.1. Let Ω:[n1,n2] be an exponential type pre-invex interval-valued function defined on [n1,n2]Λ, where Λ is an open invex set with respect to η:Λ×Λ and Ω:[n1,n2]+c is given by Ω(n)=[Ω(n),Ω(n)] for all n[n1,n2]. If ΩL1([n1,n2],), then

    (1)ik11Ω(n12)(e121)nk1nik12[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)]. (4.3)

    Proof. Let Ω:[n1,n2] be an exponential type pre-invex interval-valued function defined on [n1,n2], then

    Ω(n1+12η(n2,n1))(e121)[Ω(n2+τ1η(n1,n2))+Ω(n1+τ1η(n2,n1))]

    and

    Ω(n1+12η(n2,n1))(e121)[Ω(n2+τ1η(n1,n2))+Ω(n1+τ1η(n2,n1))].

    Taking n2=0,0n1 and multiplying by (τ1n)ik11Γ(ik1), we get

    (τ1n)ik11Γ(ik1)Ω(n12)(e121)(τ1n)ik11Γ(ik1)[Ω((1τ1)n1)+Ω(τ1n1)].

    Integrating with respect to τ1 over [0,n1] gives

    Ω(n12)1Γ(ik1)n10(τ1n)ik11dτ1(e121)Γ(ik1)n10(τ1n)ik11Ω((1τ1)n1)dτ1+(e121)Γ(ik1)n10(τ1n)ik11Ω(τ1n1)dτ1,

    implies

    Ω(n12)(1)ik11nik1Γ(ik1)(e121)Γ(ik1)n10(τ1n)ik11Ω((1τ1)n1)dτ1+(e121)Γ(ik1)n10(τ1n)ik11Ω(τ1n1)dτ1.

    Getting i-th derivative on both sides and using (4.1), we get

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    Similarly

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    Thus, we can write

    (1)ik11[Ω(n12),Ω(n12)](e121)nk1nik11[(1)ik11Ik1(1n)b[Ω((1n)b),Ω((1n)b)]+Ik1nb[Ω(nb),Ω(nb)]].

    So,

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    Corollary 4.1. If Ω(v)=Ω(v), then (4.3) leads to the following fractional inequality for exponential type pre-invex function:

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    In this paper we studied the interval-valued exponential type pre-invex functions. We established He's and Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions in the setting of Riemann-Liouville interval-valued fractional operator.

    This work was sponsored in part by Henan Science and Technology Project of China (No:182102110292).

    The author declares no conflict of interest.



    [1] A. Chehri, H. T. Mouftah, Autonomous vehicles in the sustainable cities, the beginning of a green adventure, Sustain. Cities Soc., 51 (2019), 101751. http://doi.org/10.1016/j.scs.2019.101751 doi: 10.1016/j.scs.2019.101751
    [2] T. G. Molnar, M. Hopka, D. Upadhyay, M. Van Nieuwstadt, G. Orosz, Virtual rings on highways: Traffic control by connected automated vehicles, In: AI-Enabled technologies for autonomous and connected vehicles, Cham: Springer, 2022. http://doi.org/10.1007/978-3-031-06780-8_16
    [3] F. Azadi, Comprehensive arterial traffic control for fully automated and connected vehicles, University of Pittsburgh, PhD thesis, 2022.
    [4] O. Popescu, S. Sha-Mohammad, H. Abdel-Wahab, D. C. Popescu, S. El-Tawab, Automatic incident detection in intelligent transportation systems using aggregation of traffic parameters collected through V2I communications, IEEE Intell. Transp. Syst. Mag., 9 (2017), 64–75. http://doi.org/10.1109/MITS.2017.2666578 doi: 10.1109/MITS.2017.2666578
    [5] C. A. Bojan-Dragos, R. E. Precup, S. Preitl, R. C. Roman, E. L. Hedrea, A. I. Szedlak-Stinean, GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for electromagnetic actuated clutch systems, IFAC-PapersOnline, 54 (2021), 189–194. http://doi.org/10.1016/j.ifacol.2021.10.032 doi: 10.1016/j.ifacol.2021.10.032
    [6] N. Y. Pehlivan, I. B. Turksen, A novel multiplicative fuzzy regression function with a multiplicative fuzzy clustering algorithm, Rom. J. Inf. Sci., 24 (2021), 79–98.
    [7] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1142/9789814261302_0021
    [8] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3
    [9] R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, Canada, 2013, 57–61. http://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [10] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958–965. http://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [11] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Human. Comput., 11 (2020), 663–674. http://doi.org/10.1007/s12652-019-01377-0
    [12] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 26 (2016), 1222–1230. http://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [13] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence problems, 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 2013, 1–6. http://doi.org/10.1109/WICT.2013.7113099
    [14] F. K. G¨undo˘gdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. http://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [15] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. http://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [16] L. Li, R. T. Zhang, J. Wang, X. P. Shang, K. Y. Bai, A novel approach to multi-attribute group decision-making with q-rung picture linguistic information, Symmetry, 10 (2018), 172. http://doi.org/10.3390/sym10050172 doi: 10.3390/sym10050172
    [17] S. H. Gurmani, H. Chen, Y. Bai, Dombi operations for linguistic T-spherical fuzzy number: An approach for selection of the best variety of maize, Soft Comput., 26 (2022), 9083–9100. http://doi.org/10.1007/s00500-022-07307-1 doi: 10.1007/s00500-022-07307-1
    [18] S. H. Gurmani, H. Chen, Y. Bai, An extended MABAC method for multiple-attribute group decision making under probabilistic T-spherical hesitant fuzzy environment, Kybernetes, 2022, In press. http://doi.org/10.1108/K-01-2022-0137
    [19] C. Lee, B. Hellinga, F. Saccomanno, Evaluation of variable speed limits to improve traffic safety, Transp. Res. Part C: Emerging Technol., 14 (2006), 213–228. http://doi.org/10.1016/j.trc.2006.06.002 doi: 10.1016/j.trc.2006.06.002
    [20] A. Hegyi, B. De Schutter, J. Hellendoorn, Optimal coordination of variable speed limits to suppress shock waves, Transp. Res. Rec., 1852 (2003), 167–174. http://doi.org/10.1109/TITS.2004.842408 doi: 10.1109/TITS.2004.842408
    [21] M. Abdel-Aty, L. Wang, Reducing real-time crash risk for congested expressway weaving segments using ramp metering, 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 2017,550–555. http://doi.org/10.1109/MTITS.2017.8005733
    [22] L. Luo, Y. E. Ge, F. Zhang, X. J. Ban, Real-time route diversion control in a model predictive control framework with multiple objectives: Traffic efficiency, emission reduction, and fuel economy, Transp. Res. D: Transp. Environ., 48 (2016), 332–356. http://doi.org/10.1016/j.trd.2016.08.013 doi: 10.1016/j.trd.2016.08.013
    [23] Y. Han, D. Chen, S. Ahn, Variable speed limit control at fixed freeway bottlenecks using connected vehicles, Transp. Res. B: Methodol., 98 (2017), 113–134. http://doi.org/10.1016/j.trb.2016.12.013 doi: 10.1016/j.trb.2016.12.013
    [24] P. Wang, H. Deng, J. Zhang, M. Zhang, Real-time urban regional route planning model for connected vehicles based on V2X communication, J. Transp. Land Use, 13 (2020), 517–538.
    [25] S. R. Bonab, S. J. Ghoushchi, M. Deveci, G. Haseli, Logistic autonomous vehicles assessment using decision support model under spherical fuzzy set integrated Choquet integral approach, Expert Syst. Appl., 214 (2023), 119205. http://doi.org/10.1016/j.eswa.2022.119205 doi: 10.1016/j.eswa.2022.119205
    [26] Z. H. Khattak, B. L. Smith, M. D. Fontaine, Impact of cyberattacks on safety and stability of connected and automated vehicle platoons under lane changes, Accid. Anal. Prev., 150 (2021), 105861. http://doi.org/10.1016/j.aap.2020.105861 doi: 10.1016/j.aap.2020.105861
    [27] Z. H. Khattak, B. L. Smith, H. Park, M. D. Fontaine, Cooperative lane control application for fully connected and automated vehicles at multilane freeways, Transp. Res. Part C: Emerging Technol., 111 (2020), 294–317. http://doi.org/10.1016/j.trc.2019.11.007 doi: 10.1016/j.trc.2019.11.007
    [28] M. Khayatian, M. Mehrabian, A. Shrivastava, RIM: Robust intersection management for connected autonomous vehicles, 2018 IEEE Real-Time Systems Symposium (RTSS), Nashville, USA, 2018, 35–44. http://doi.org/10.1109/RTSS.2018.00014
    [29] A. Talebpour, H. S. Mahmassani, Influence of autonomous and connected vehicles on the stability of traffic flow, Transportation Research Board 94th Annual Meeting, Washington DC, United States, 2015, 15-5971.
    [30] I. Gokasar, D. Pamucar, M. Deveci, W. Ding, A novel rough numbers based extended MACBETH method for the prioritization of the connected autonomous vehicles in real-time traffic management, Expert Syst. Appl., 211 (2023), 118445. http://doi.org/10.1016/j.eswa.2022.118445 doi: 10.1016/j.eswa.2022.118445
    [31] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning Part I, Inf. Sci., 8 (1975), 199–249. http://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [32] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8 (2000), 746–752. http://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [33] F. Herrera, L. Martínez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 8 (2000), 539–562. http://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
    [34] H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM, J. Appl. Math., 2014 (2014), 432092. http://doi.org/10.1155/2014/432092 doi: 10.1155/2014/432092
    [35] H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, Int. J. Intell. Syst., 33 (2018), 1234–1263. http://doi.org/10.1002/int.21979 doi: 10.1002/int.21979
    [36] M. Lin, X. Li, L. Chen, Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators, Int. J. Intell. Syst., 35 (2020), 217–249. http://doi.org/10.1002/int.22136 doi: 10.1002/int.22136
    [37] X. Deng, J. Wang, G. Wei, Some 2-tuple linguistic Pythagorean Heronian mean operators and their application to multiple attribute decision-making, J. Exp. Theor. Artif. Intell., 31 (2019), 555–574. http://doi.org/10.1080/0952813X.2019.1579258 doi: 10.1080/0952813X.2019.1579258
    [38] M. Akram, A. Khan, A. Luqman, T. Senapati, D. Pamucar, An extended MARCOS method for MCGDM under 2-tuple linguistic q-rung picture fuzzy environment, Eng. Appl. Artif. Intell., 120 (2023), 105892. http://doi.org/10.1016/j.engappai.2023.105892 doi: 10.1016/j.engappai.2023.105892
    [39] C. L. Hwang, K. Yoon, Multiple attributes decision making methods and applications, Berlin, Heidelberg: Springer, 1981.
    [40] D. Pamucar, G. Cirovic, The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC), Expert Syst. Appl., 42 (2015), 3016–3028. http://doi.org/10.1016/j.eswa.2014.11.057 doi: 10.1016/j.eswa.2014.11.057
    [41] S. Opricovic, Multicriteria optimization of civil engineering systems, PhD Thesis, Faculty Civil Engineering, Belgrade, 1998.
    [42] M. Lihong, Z. Yanping, Z. Zhiwei, Improved VIKOR algorithm based on AHP and Shannon entropy in the selection of thermal power enterprise's coal suppliers, International Conference on Information Management, Innovation Management and Industrial Engineering, 2 (2008), 129–133. http://doi.org/10.1109/ICIII.2008.29 doi: 10.1109/ICIII.2008.29
    [43] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Manag. Sci., 4 (1970), 141–164. http://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
    [44] M. K. Ghorabaee, E. K., Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance based assessment (CODAS) method for multi-criteria decision-making, Econ. Comput. Econ. Cybern. Stud. Res., 50 (2016), 25–44.
    [45] F. Lei, G. Wei, X. Chen, Model-based evaluation for online shopping platform with probabilistic double hierarchy linguistic CODAS method, Int. J. Intell. Syst., 36 (2021), 5339–5358. http://doi.org/10.1002/int.22514 doi: 10.1002/int.22514
    [46] V. Simic, S. Karagoz, M. Deveci, N. Aydin, Picture fuzzy extension of the CODAS method for multi-criteria vehicle shredding facility location, Expert Syst. Appl., 175 (2021), 114644. http://doi.org/10.1016/j.eswa.2021.114644 doi: 10.1016/j.eswa.2021.114644
    [47] Q. Wang, Research on teaching quality evaluation of college english based on the CODAS method under interval-valued intuitionistic fuzzy information, J. Intell. Fuzzy Syst., 41 (2021), 1499–1508. http://doi.org/10.3233/JIFS-210366 doi: 10.3233/JIFS-210366
    [48] T. He, S. Zhang, G. Wei, R. Wang, J. Wu, C. Wei, CODAS method for 2-tuple linguistic Pythagorean fuzzy multiple attribute group decision making and its application to financial management performance assessment, Technol. Econ. Dev. Econ., 26 (2020), 920–932. http://doi.org/10.3846/tede.2020.11970 doi: 10.3846/tede.2020.11970
    [49] S. Naz, M. Akram, A. Sattar, M. M. A. Al-Shamiri, 2-Tuple linguistic q-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection, AIMS Mathematics, 7 (2022), 17529–17569. http://doi.org/10.3934/math.2022966 doi: 10.3934/math.2022966
    [50] S. Vinodh, V. A. Wankhede, Application of fuzzy DEMATEL and fuzzy CODAS for analysis of workforce attributes pertaining to Industry 4.0: A case study, Int. J. Qual. Reliab. Manag., 38 (2021), 1695–1721. http://doi.org/10.1108/IJQRM-09-2020-0322 doi: 10.1108/IJQRM-09-2020-0322
    [51] K. Deveci, R. Cin, A. Kagizman, A modified interval valued intuitionistic fuzzy CODAS method and its application to multi-criteria selection among renewable energy alternatives in Turkey, Appl. Soft Comput., 96 (2020), 106660. http://doi.org/10.1016/j.asoc.2020.106660 doi: 10.1016/j.asoc.2020.106660
    [52] H. Y. Aydogmus, E. Kamber, C. Kahraman, ERP selection using picture fuzzy CODAS method, J. Intell. Fuzzy Syst., 40 (2021), 11363–11373. http://doi.org/10.3233/JIFS-202564 doi: 10.3233/JIFS-202564
    [53] S. Karagoz, M. Deveci, V. Simic, N. Aydin, U. Bolukbas, A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: A case study of Istanbul, Waste Manag. Res., 38 (2020), 660–672. http://doi.org/10.1177/0734242X19899729 doi: 10.1177/0734242X19899729
    [54] A. Karasan, E. Bolt¨urk, F. K. G¨undo˘gdu, Assessment of livability indices of suburban places of Istanbul by using spherical fuzzy CODAS method, Decision making with spherical fuzzy sets: Theory and applications, Cham: Springer, 2021. http://doi.org/10.1007/978-3-030-45461-6_12
    [55] M. Akram, Z. Niaz, F. Feng, Extended CODAS method for multi-attribute group decision-making based on 2-tuple linguistic Fermatean fuzzy Hamacher aggregation operators, Granul. Comput., 2022. http://doi.org/10.1007/s41066-022-00332-3
    [56] M. Akram, S. Naz, G. Santos-Garcia, M. R. Saeed, Extended CODAS method for MAGDM with 2-tuple linguistic T-spherical fuzzy sets, AIMS Mathematics, 8 (2023), 3428–3468. http://doi.org/10.3934/math.2023176 doi: 10.3934/math.2023176
    [57] M. Akram, S. Naz, F. Feng, G. Ali, A. Shafiq, Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection, AIMS Mathematics, 8 (2023), 10619–10653. http://doi.org/10.3934/math.2023539 doi: 10.3934/math.2023539
    [58] X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. http://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
    [59] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Syst. Man Cybern., 18 (1988), 183–190. http://doi.org/10.1109/21.87068 doi: 10.1109/21.87068
    [60] H. Gassert, Operators on fuzzy sets: Zadeh and Einstein, Department of Computer Science Information Systems Group, University of Fribourg, Seminar Paper, 2004.
    [61] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. http://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [62] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., 12 (2004), 45–61. http://doi.org/10.1109/TFUZZ.2003.822678 doi: 10.1109/TFUZZ.2003.822678
    [63] H. Garg, Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making, Comput. Ind. Eng., 101 (2016), 53–69. http://doi.org/10.1016/j.cie.2016.08.017 doi: 10.1016/j.cie.2016.08.017
    [64] W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operations, IEEE Trans. Fuzzy Syst., 20 (2012), 923–938. http://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405
    [65] S. Khan, S. Abdullah, S. Ashraf, Picture fuzzy aggregation information based on Einstein operations and their application in decision making, Math. Sci., 13 (2019), 213–229. http://doi.org/10.1007/s40096-019-0291-7 doi: 10.1007/s40096-019-0291-7
    [66] X. Zhao, G. Wei, Some intuitionistic fuzzy Einstein hybrid aggregation operators and their application to multiple attribute decision making, Knowl. Based Syst., 37 (2013), 472–479. http://doi.org/10.1016/j.knosys.2012.09.006 doi: 10.1016/j.knosys.2012.09.006
    [67] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. http://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [68] G. W. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 713–724. http://doi.org/10.3233/JIFS-161798 doi: 10.3233/JIFS-161798
    [69] M. Akram, S. Naz, S. A. Edalatpanah, R. Mehreen, Group decision-making framework under linguistic q-rung orthopair fuzzy Einstein models, Soft Comput., 25 (2021), 10309–10334. http://doi.org/10.1007/s00500-021-05771-9 doi: 10.1007/s00500-021-05771-9
    [70] S. Faizi, S. Nawaz, A. Ur-Rehman, Intuitionistic 2-tuple linguistic aggregation information based on Einstein operations and their applications in group decision making, Artif. Intell. Rev., 53 (2020), 4625–4650. http://doi.org/10.1007/s10462-020-09856-z doi: 10.1007/s10462-020-09856-z
    [71] K. Kumar, S. M. Chen, Multiple attribute group decision making based on advanced linguistic intuitionistic fuzzy weighted averaging aggregation operator of linguistic intuitionistic fuzzy numbers, Inf. Sci., 587 (2022), 813–824. http://doi.org/10.1016/j.ins.2021.11.014 doi: 10.1016/j.ins.2021.11.014
    [72] P. Rani, A. R. Mishra, Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection, Expert Syst. Appl., 182 (2021), 115267. http://doi.org/10.1016/j.eswa.2021.115267 doi: 10.1016/j.eswa.2021.115267
    [73] B. Sarkar, A. Biswas, Linguistic Einstein aggregation operator-based TOPSIS for multicriteria group decision making in linguistic Pythagorean fuzzy environment, Int. J. Intell. Syst., 36 (2021), 2825–2864. http://doi.org/10.1002/int.22403 doi: 10.1002/int.22403
  • This article has been cited by:

    1. Kin Keung Lai, Jaya Bisht, Nidhi Sharma, Shashi Kant Mishra, Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions, 2022, 10, 2227-7390, 264, 10.3390/math10020264
    2. Yeliang Xiao, Ahsan Fareed Shah, Tariq Javed Zia, Ebenezer Bonyah, Muhammad Gulzar, Positive Weighted Symmetry Function Kernels and Some Related Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9372629
    3. Lei Geng, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Rahat Bano, Yusuf Gurefe, Fractional Version of Hermite-Hadamard and Fejér Type Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/2935740
    4. Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, 2022, 7, 2473-6988, 15041, 10.3934/math.2022824
    5. Yeliang Xiao, Muhammad Shoaib Saleem, Faiza Batool, Xiaolong Qin, Some Fractional Integral Inequalities for a Generalized Class of Nonconvex Functions, 2022, 2022, 2314-4785, 1, 10.1155/2022/3476461
    6. Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri, Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory, 2024, 8, 2504-3110, 408, 10.3390/fractalfract8070408
    7. Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Some well known inequalities on two dimensional convex mappings by means of Pseudo LR interval order relations via fractional integral operators having non-singular kernel, 2024, 9, 2473-6988, 16061, 10.3934/math.2024778
    8. Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, 2024, 21, 1551-0018, 3422, 10.3934/mbe.2024151
    9. Hanan Alohali, Valer-Daniel Breaz, Omar Mutab Alsalami, Luminita-Ioana Cotirla, Ahmed Alamer, Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane, 2024, 13, 2075-1680, 684, 10.3390/axioms13100684
    10. Abdullah Ali H. Ahmadini, Waqar Afzal, Mujahid Abbas, Elkhateeb S. Aly, Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems, 2024, 12, 2227-7390, 382, 10.3390/math12030382
    11. Maryam Gharamah Ali Alshehri, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Yoshihiro Sawano, Some New Improvements for Fractional Hermite–Hadamard Inequalities by Jensen–Mercer Inequalities, 2024, 2024, 2314-8896, 10.1155/2024/6691058
    12. Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Kwara Nantomah, Ding-Xuan Zhou, Some Novel Inequalities for Godunova–Levin Preinvex Functions via Interval Set Inclusion (⊆) Relation, 2025, 2025, 2314-4629, 10.1155/jom/5570638
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1583) PDF downloads(57) Cited by(4)

Figures and Tables

Figures(4)  /  Tables(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog