$ \mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.
Citation: Wenbin Gong, Yaqiang Wang. Some new criteria for judging $ \mathcal{H} $-tensors and their applications[J]. AIMS Mathematics, 2023, 8(4): 7606-7617. doi: 10.3934/math.2023381
$ \mathcal{H} $-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an $ \mathcal{H} $-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant $ k $ to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.
[1] | Y. Yang, Q. Yang, Further results for Perron Frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517–2530. https://doi.org/10.1137/090778766 doi: 10.1137/090778766 |
[2] | C. Lv, C. Ma, An iterative scheme for identifying the positive semi-definiteness of even-order real symmetric H-tensor, J. Comput. Appl. Math., 392 (2021), 113498. https://doi.org/10.1016/j.cam.2021.113498 doi: 10.1016/j.cam.2021.113498 |
[3] | C. Li, F. Wang, J. Zhao, Y. Zhu, Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1–14. https://doi.org/10.1016/j.cam.2013.04.022 doi: 10.1016/j.cam.2013.04.022 |
[4] | G. Wang, F. Tan, Some Criteria for H-Tensors, in Chinese, Com. Appl. Math. Comput., 2 (2020), 1–11. |
[5] | K. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507–520. |
[6] | R. Zhao, L. Gao, Q. Liu, Y. Li, Criterions for identifying $H$-tensors, Front. Math. China, 3 (2016), 661–678. https://doi.org/10.1007/s11464-016-0519-x doi: 10.1007/s11464-016-0519-x |
[7] | C. Li, Y. Li, K. Xu, New eigenvalue inclusion sets for tensor, Numer. Algebra App., 21 (2014), 39–50. https://doi.org/10.1002/nla.1858 doi: 10.1002/nla.1858 |
[8] | F. Wang, D. Sun, New criteria for $H$-tensors and an application, J. Inequal. Appl., 20 (2016), 96–106. https://doi.org/10.1515/math-2015-0058 doi: 10.1515/math-2015-0058 |
[9] | Y. Li, Q. Liu, L. Qi, Programmable criteria for strong $H$-tensors, Numer. Algor., 74 (2017), 199–221. https://doi.org/10.1007/s11075-016-0145-4 doi: 10.1007/s11075-016-0145-4 |
[10] | F. Wang, D. Sun, J. Zhao, C. Li, New practical criteria for $H$-tensors and its application, Linear Multilinear A., 65 (2017), 269–283. https://doi.org/10.1080/03081087.2016.1183558 doi: 10.1080/03081087.2016.1183558 |
[11] | M. Kannan, N. Shaked, A. Berman, Some properties of strong $H$-tensors and general $H$-tensors, Linear Algebra Appl., 476 (2015), 42–55. https://doi.org/10.1016/j.laa.2015.02.034 doi: 10.1016/j.laa.2015.02.034 |
[12] | J. Cui, G. Peng, Q. Lu, Z. Huang, New iterative criteria for strong $H$-tensors and an application, J. Inequal Appl., 2017 (2017), 49. https://doi.org/10.1186/s13660-017-1323-1 doi: 10.1186/s13660-017-1323-1 |
[13] | Y. Wang, G. Zhou, L. Caccetta, Nonsingular $H$-tensor and its criteria, J. Ind. Manag. Optim., 4 (2016), 1173–1186. https://doi.org/10.3934/jimo.2016.12.1173 doi: 10.3934/jimo.2016.12.1173 |
[14] | G. Li, Y. Zhang, Y. Feng, Criteria for nonsingular $H$-tensors, Adv. Appl. Math., 2 (2018), 66–72. |
[15] | Y. Xu, R. Zhao, B. Zheng, Some criteria for identifying strong $H$-tensors, Numer Algor., 80 (2019), 1121–1141. https://doi.org/10.1007/s11075-018-0519-x doi: 10.1007/s11075-018-0519-x |
[16] | F. Wang, D. Sun, Y. Xu, Some criteria for identifying $H$-tensors and its applications, Calcolo, 56 (2019), 2–17. |
[17] | W. Ding, L. Qi, Y. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264–3278. https://doi.org/10.1016/j.laa.2013.08.038 doi: 10.1016/j.laa.2013.08.038 |
[18] | L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007 |
[19] | L. Qi, Y. Song, An even order symmetric $B$-tensor is positive definite, Linear Algebra Appl., 457 (2014), 303–312. https://doi.org/10.1016/j.laa.2014.05.026 doi: 10.1016/j.laa.2014.05.026 |
[20] | L. Qi, G. Yu, Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vis., 45 (2013), 103–113. https://doi.org/10.1007/s10851-012-0346-y doi: 10.1007/s10851-012-0346-y |