It is valuable to measure the epidemiological significance of malaria, since there has been a growing interest in reducing malaria through improved local and national health care systems. We formulate the dynamics of malaria infection via a fractional framework to understand the intricate transmission route of malaria and to identify the role of memory for the control of malaria. The model is investigated for basic results, moreover, the basic reproduction number is determined symbolized by $ \mathcal{R}_0 $. We have shown the local stability of the disease-free steady-state of the system for for $ \mathcal{R}_0 < 1 $. The existence and uniqueness of the solution of the system are examined. The Adams Bashforth approach in fractional form is applied to analyse the numerical outcomes of the mathematical model. Furthermore, in order to realise more efficiently, the Atangana-Baleanu (ABC) fractional nonlocal operator, which was just invented, is used. The stability of the system is investigated through the fixed-point theorems of Krasnoselskii and Banach. The behaviour of the approximation solution is illustrated in terms of graphs across various fractional values and other factors of the systems. After all, a brief analysis of the simulation's findings is provided to explain how infection transmission dynamics occur in society.
Citation: Rashid Jan, Sultan Alyobi, Mustafa Inc, Ali Saleh Alshomrani, Muhammad Farooq. A robust study of the transmission dynamics of malaria through non-local and non-singular kernel[J]. AIMS Mathematics, 2023, 8(4): 7618-7640. doi: 10.3934/math.2023382
It is valuable to measure the epidemiological significance of malaria, since there has been a growing interest in reducing malaria through improved local and national health care systems. We formulate the dynamics of malaria infection via a fractional framework to understand the intricate transmission route of malaria and to identify the role of memory for the control of malaria. The model is investigated for basic results, moreover, the basic reproduction number is determined symbolized by $ \mathcal{R}_0 $. We have shown the local stability of the disease-free steady-state of the system for for $ \mathcal{R}_0 < 1 $. The existence and uniqueness of the solution of the system are examined. The Adams Bashforth approach in fractional form is applied to analyse the numerical outcomes of the mathematical model. Furthermore, in order to realise more efficiently, the Atangana-Baleanu (ABC) fractional nonlocal operator, which was just invented, is used. The stability of the system is investigated through the fixed-point theorems of Krasnoselskii and Banach. The behaviour of the approximation solution is illustrated in terms of graphs across various fractional values and other factors of the systems. After all, a brief analysis of the simulation's findings is provided to explain how infection transmission dynamics occur in society.
[1] | CDC, What is malaria? In: About malaria: frequently asked questions, 2022, 1–1. https://www.cdc.gov/malaria/about/faqs.html |
[2] | WHO, Global malaria p rogramme, World malaria report 2019, Geneva: World Health Organization, 2019. |
[3] | H. Frumkin, Environmental health: from global to local, San Francisco: Jossey-Bass, 2016. |
[4] | P. Wilkinson, Environmental epidemiology, Berkshire: Open University Press, 2006. |
[5] | E. Bottius, A. Guanzirolli, J. Trape, C. Rogier, L. Konate, P. Druilhe, Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction, Trans. R. Soc. Trop. Med. Hyg., 90 (1996), 15–19. http://dx.doi.org/10.1016/s0035-9203(96)90463-0 doi: 10.1016/s0035-9203(96)90463-0 |
[6] | T. Bousema, L. Okell, I. Felger C. Drakeley, Asymptomatic malaria infections: detectability, transmissibility and public health relevance, Nat. Rev. Microbiol., 12 (2014), 833–840. http://dx.doi.org/10.1038/nrmicro3364 doi: 10.1038/nrmicro3364 |
[7] | J. Coura, M. Suez-Mutis, S. Ladeia-Andrade, A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection review, Mem. Inst. Oswaldo. Cruz., 101 (2006), 229–237. http://dx.doi.org/10.1590/s0074-02762006000300001 doi: 10.1590/s0074-02762006000300001 |
[8] | K. Marsh, D. Forster, C. Waruiru, I. Mwangi, M. Winstanley, V. Marsh, et al., Indicators of lifethreatening malaria in African children, N. Engl. J. Med., 332 (1995), 1399–1404. http://dx.doi.org/10.1056/NEJM199505253322102 doi: 10.1056/NEJM199505253322102 |
[9] | J. Trape, A. Zoulani, M. Quinet, Assessment of the incidence and prevalence of clinical malaria in semi-immune children exposed to intense and perennial transmission, Am. J. Epidemiol., 126 (1987), 193–201. http://dx.doi.org/10.1093/aje/126.2.193 doi: 10.1093/aje/126.2.193 |
[10] | K. Day, K. Marsh, Naturally acquired immunity to plasmodium falciparum, Immunology Today, 12 (1991), 68–71. http://dx.doi.org/10.1016/s0167-5699(05)80020-9 doi: 10.1016/s0167-5699(05)80020-9 |
[11] | J. Filipe, E. Riley, C. Drakeley, C. Sutherland, A. Ghani, Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model, PLOS Comput. Biol., 3 (2007), 255. http://dx.doi.org/10.1371/journal.pcbi.0030255 doi: 10.1371/journal.pcbi.0030255 |
[12] | J. Li, A malaria model with partial immunity in humans, Math. Biosci. Eng., 5 (2008), 789–801. http://dx.doi.org/10.3934/mbe.2008.5.789 doi: 10.3934/mbe.2008.5.789 |
[13] | B. Kamangira, P. Nyamugure, G. Magombedze, A theoretical mathematical assessment of the effectiveness of coartemether in the treatment of Plasmodium falciparum malaria infection, Math. Biosci., 256 (2014), 28–41. http://dx.doi.org/10.1016/j.mbs.2014.07.010 doi: 10.1016/j.mbs.2014.07.010 |
[14] | O. Prosper, N. Ruktanonchai, M. Martcheva, Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity, J. Theor. Biol., 353 (2014), 142–156. http://dx.doi.org/10.1016/j.jtbi.2014.03.013 doi: 10.1016/j.jtbi.2014.03.013 |
[15] | C. Chiyaka, Z. Mukandavire, P. Das, Global dynamics of a malaria model with partial immunity and two discrete time delays, Int. J. Biomath., 4 (2011), 135–147. http://dx.doi.org/10.1142/S1793524511001386 doi: 10.1142/S1793524511001386 |
[16] | F. Forouzannia, A. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci., 247 (2014), 80–94. http://dx.doi.org/10.1016/j.mbs.2013.10.011 doi: 10.1016/j.mbs.2013.10.011 |
[17] | E. Shim, Z. Feng, C. Castillo-Chavez, Differential impact of sickle cell trait on symptomatic and asymptomatic malaria, Math. Biosci. Eng., 9 (2012), 877–898. http://dx.doi.org/10.3934/mbe.2012.9.877 doi: 10.3934/mbe.2012.9.877 |
[18] | A. Ghani, C. Sutherland, E. Riley, C. Drakeley, J. Griffin, R. Gosling, et al., Loss of population levels of immunity to malaria as a result of exposure-reducing interventions: consequences for interpretation of disease trends, PLoS ONE, 4 (2009), 4383. http://dx.doi.org/10.1371/journal.pone.0004383 doi: 10.1371/journal.pone.0004383 |
[19] | R. Kassam, J. Collins, E. Liow, N. Rasool, Narrative review of current context of malaria and management strategies in Uganda (part Ⅰ), Acta Trop., 152 (2015), 252–268. http://dx.doi.org/10.1016/j.actatropica.2015.07.028 doi: 10.1016/j.actatropica.2015.07.028 |
[20] | V. Robert, K. Macintyre, J. Keating, J. Trape, J. Duchemin, M. Warren, et al., Malaria transmission in urban sub-Saharan Africa, Am. J. Trop. Med. Hyg., 68 (2003), 169–176. http://dx.doi.org/10.4269/ajtmh.2003.68.169 doi: 10.4269/ajtmh.2003.68.169 |
[21] | S. Lawpoolsri, E. Klein, P. Singhasivanon, S. Yimsamran, N. Thanyavanich, W. Maneeboonyang, et al., Optimally timing primaquine treatment to reduce plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations, Malar. J., 8 (2009), 159. http://dx.doi.org/10.1186/1475-2875-8-159 doi: 10.1186/1475-2875-8-159 |
[22] | M. Sinan, H. Ahmad, Z. Ahmad, J. Baili, S. Murtaza, M. Aiyashi, et al., Fractional mathematical modeling of malaria disease with treatment & insecticides, Results Phys., 34 (2022), 105220. http://dx.doi.org/10.1016/j.rinp.2022.105220 doi: 10.1016/j.rinp.2022.105220 |
[23] | A. Malik, M. Alkholief, F. Aldakheel, A. Khan, Z. Ahmad, W. Kamal, et al., Sensitivity analysis of COVID-19 with quarantine and vaccination: a fractal-fractional model, Alex. Eng. J., 61 (2022), 8859–8874. http://dx.doi.org/10.1016/j.aej.2022.02.024 doi: 10.1016/j.aej.2022.02.024 |
[24] | B. Ogutu, A. Tiono, M. Makanga, Z. Premji, A. Gbadoé, D. Ubben, et al., Treatment of asymptomatic carriers with artemether-lumefantrine: an opportunity to reduce the burden of malaria, Malar. J., 9 (2010), 30. http://dx.doi.org/10.1186/1475-2875-9-30 doi: 10.1186/1475-2875-9-30 |
[25] | L. An, W. Jager, A quantitative model of population dynamics in malaria with drug treatment, J. Math. Biol., 69 (2014), 659–685. http://dx.doi.org/10.1007/s00285-013-0716-0 doi: 10.1007/s00285-013-0716-0 |
[26] | O. Prosper, M. Martcheva, Impact of enhanced malaria control on the competition between Plasmodium falciparum and Plasmodium vivax in India, Math. Biosci., 242 (2013), 33–50. http://dx.doi.org/10.1016/j.mbs.2012.11.015 doi: 10.1016/j.mbs.2012.11.015 |
[27] | K. Okosun, O. Makinde, A co-infection model of malaria and cholera diseases with optimal control, Math. Biosci., 258 (2014), 19–32. http://dx.doi.org/10.1016/j.mbs.2014.09.008 doi: 10.1016/j.mbs.2014.09.008 |
[28] | F. Agusto, S. Lenhart, Optimal control of the spread of malaria superinfectivity, J. Biol. Syst., 21 (2014), 911–924. http://dx.doi.org/10.1142/S0218339013400020 doi: 10.1142/S0218339013400020 |
[29] | K. Blayneh, Y. Cao, H. Kwon, Optimal control of vector-borne diseases: treatment and prevention, Discrete Cont. Dyn.-B, 11 (2009), 587–611. http://dx.doi.org/10.3934/dcdsb.2009.11.587 doi: 10.3934/dcdsb.2009.11.587 |
[30] | Z. Sang, Z. Qiu, Q. Kong, Y. Zou, Assessment of vector control and pharmaceutical treatment in reducing malaria burden: a sensitivity and optimal control analysis, J. Biol. Syst., 20 (2012), 67–85. http://dx.doi.org/10.1142/S0218339011500331 doi: 10.1142/S0218339011500331 |
[31] | G. Mwanga, H. Haario, V. Capasso, Optimal control problems of epidemic systems with parameter uncertainties: application to a malaria two-age-classes transmission model with asymptomatic carriers, Math. Biosci., 261 (2015), 1–12. http://dx.doi.org/10.1016/j.mbs.2014.11.005 doi: 10.1016/j.mbs.2014.11.005 |
[32] | L. Chaves, L. Harrington, C. Keogh, A. Nguyen, U. Kitron, Blood feeding patterns of mosquitoes: random or structured, Front. Zool., 7 (2010), 3. http://dx.doi.org/10.1186/1742-9994-7-3 doi: 10.1186/1742-9994-7-3 |
[33] | C. Vinauger, L. Buratti, C. Lazzari, Learning the way to blood: first evidence of dual olfactory conditioning in a blood-sucking insect, Rhodnius prolixus. I. appetitive learning, J. Exp. Biol., 214 (2011), 3032–3038. http://dx.doi.org/10.1242/jeb.056697 doi: 10.1242/jeb.056697 |
[34] | Z. Shah, E. Bonyah, E. Alzahrani, R. Jan, N. Alreshidi, Chaotic phenomena and oscillations in dynamical behaviour of financial system via fractional calculus, Complexity, 2022 (2022), 8113760. http://dx.doi.org/10.1155/2022/8113760 doi: 10.1155/2022/8113760 |
[35] | M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. Ansari, Z. Ahmad, et al., Fractional order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 105044. http://dx.doi.org/10.1016/j.rinp.2021.105044 doi: 10.1016/j.rinp.2021.105044 |
[36] | Z. Shah, R. Jan, P. Kumam, W. Deebani, M. Shutaywi, Fractional dynamics of HIV with source term for the supply of new CD4$^{+}$ T-cells depending on the viral load via Caputo-fabrizio derivative, Molecules, 26 (2021), 1806. http://dx.doi.org/10.3390/molecules26061806 doi: 10.3390/molecules26061806 |
[37] | Z. Ahmad, S. El-Kafrawy, T. Alandijany, F. Giannino, A. Mirza, M. El-Daly, et al., A global report on the dynamics of COVID-19 with quarantine and hospitalization: a fractional order model with non-local kernel, Comput. Biol. Chem., 98 (2022), 107645. http://dx.doi.org/10.1016/j.compbiolchem.2022.107645 doi: 10.1016/j.compbiolchem.2022.107645 |
[38] | K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation, 10 (2022), 97. http://dx.doi.org/10.3390/computation10060097 doi: 10.3390/computation10060097 |
[39] | K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. http://dx.doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049 |
[40] | S. Ulam, Problems in modern mathematics, New York: Wiley, 1964. |
[41] | S. Ulam, A collection of mathematical problems, New York: Interscience Publishers, 1960. |
[42] | Z. Ali, P. Kumam, K. Shah, A. Zada, Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations, Mathematics, 7 (2019), 341. http://dx.doi.org/10.3390/math7040341 doi: 10.3390/math7040341 |
[43] | A. Aphithana, S. Ntouyas, J. Tariboon, Existence and Ulam-Hyers stability for Caputo conformable differential equations with four-point integral conditions, Adv. Differ. Equ., 2019 (2019), 139. http://dx.doi.org/10.1186/s13662-019-2077-5 doi: 10.1186/s13662-019-2077-5 |
[44] | K. Hattaf, A. Mohsen, H. Al-Husseiny, Gronwall inequality and existence of solutions for differential equations with generalized Hattaf fractional derivative, J. Math. Comput. Sci., 27 (2022), 18–27. http://dx.doi.org/10.22436/jmcs.027.01.02 doi: 10.22436/jmcs.027.01.02 |
[45] | A. Jan, R. Jan, H. Khan, M. Zobaer, R. Shah, Fractional-order dynamics of Rift Valley fever in ruminant host with vaccination, Commun. Math. Biol. Neur., 2020 (2020), 79. http://dx.doi.org/10.28919/cmbn/5017 doi: 10.28919/cmbn/5017 |
[46] | K. Hattaf, Z. Hajhouji, M. Ichou, N. Yousfi, A numerical method for fractional differential equations with new generalized Hattaf fractional derivative, Math. Probl. Eng., 2022 (2022), 3358071. http://dx.doi.org/10.1155/2022/3358071 doi: 10.1155/2022/3358071 |