This article begins with a dynamical analysis of the Permanent Magnet Synchronous Generator (PMSG) in a wind turbine system with quadratic nonlinearities. The dynamical behaviors of the PMSG are analyzed and examined using Poincare map, bifurcation model, and Lyapunov spectrum. Finally, an adaptive type-2 fuzzy controller is designed for different flow configurations of the PMSG. An analysis of the performance for the proposed approach is evaluated for effectiveness by simulating the PMSG. In addition, the proposed controller uses advantages of adaptive type-2 fuzzy controller in handling dynamic uncertainties to approximate unknown non-linear actions.
Citation: Aceng Sambas, Ardashir Mohammadzadeh, Sundarapandian Vaidyanathan, Ahmad Faisal Mohamad Ayob, Amiral Aziz, Mohamad Afendee Mohamed, Ibrahim Mohammed Sulaiman, Mohamad Arif Awang Nawi. Investigation of chaotic behavior and adaptive type-2 fuzzy controller approach for Permanent Magnet Synchronous Generator (PMSG) wind turbine system[J]. AIMS Mathematics, 2023, 8(3): 5670-5686. doi: 10.3934/math.2023285
This article begins with a dynamical analysis of the Permanent Magnet Synchronous Generator (PMSG) in a wind turbine system with quadratic nonlinearities. The dynamical behaviors of the PMSG are analyzed and examined using Poincare map, bifurcation model, and Lyapunov spectrum. Finally, an adaptive type-2 fuzzy controller is designed for different flow configurations of the PMSG. An analysis of the performance for the proposed approach is evaluated for effectiveness by simulating the PMSG. In addition, the proposed controller uses advantages of adaptive type-2 fuzzy controller in handling dynamic uncertainties to approximate unknown non-linear actions.
[1] | J. D. Li, G. D. Wang, Z. H. Li, S. L. Yang, W. T. Chong, X. B. Xiang, A review on development of offshore wind energy conversion system, Int. J. Energy Res., 44 (2020), 9283–9297. https://doi.org/10.1002/er.5751 doi: 10.1002/er.5751 |
[2] | K. B. Tawfiq, A. S. Mansour, H. S. Ramadan, M. Becherif, E. E. El-Kholy, Wind energy conversion system topologies and converters: Comparative review, Energy Procedia, 162 (2019), 38–47. https://doi.org/10.1016/j.egypro.2019.04.005 doi: 10.1016/j.egypro.2019.04.005 |
[3] | Z. Q. Wu, W. J. Jia, L. R. Zhao, C. H. Wu, Maximum wind power tracking for PMSG chaos systems-ADHDP method, Appl. Soft Comput., 36 (2015), 204–209. https://doi.org/10.1016/j.asoc.2015.07.024 doi: 10.1016/j.asoc.2015.07.024 |
[4] | M. Borah, B. K. Roy, Dynamics of the fractional‐order chaotic PMSG, its stabilisation using predictive control and circuit validation, IET Electri. Power Appl., 11 (2017), 707–716. https://doi.org/10.1049/iet-epa.2016.0506 doi: 10.1049/iet-epa.2016.0506 |
[5] | N. K. Saxena, A. Kumar, V. Gupta, Enhancement of system performance using STATCOM as dynamic compensator with squirrel cage induction generator (SCIG) based microgrid, Int. J. Emerg. Electri. Power Syst., 22 (2021), 177–189. https://doi.org/10.1515/ijeeps-2020-0228 doi: 10.1515/ijeeps-2020-0228 |
[6] | P. Raja, M. P. Selvan, N. Kumaresan, Enhancement of voltage stability margin in radial distribution system with squirrel cage induction generator based distributed generators, IET Gener. Transm. Dis., 7 (2013), 898–906. https://doi.org/10.1049/iet-gtd.2012.0579 doi: 10.1049/iet-gtd.2012.0579 |
[7] | C. Kalaivani, K. Rajambal, Modeling and analysis of multiphase induction generator, In: 2016 International conference on circuit, power and computing technologies, 2016. https://doi.org/10.1109/ICCPCT.2016.7530363 |
[8] | K. Chandramohan, S. Padmanaban, R. Kalyanasundaram, F. Blaabjerg, Modeling of five-phase, self-excited induction generator for wind mill application, Electri. Power Compo. Syst., 46 (2018), 353–363. https://doi.org/10.1080/15325008.2018.1444689 doi: 10.1080/15325008.2018.1444689 |
[9] | W. L. Dai, Y. H. Yu, M. Hua, C. C. Cai, Voltage regulation system of doubly salient electromagnetic generator based on indirect adaptive fuzzy control, IEEE Access, 5 (2017), 14187–14194. https://doi.org/10.1109/ACCESS.2017.2719048 doi: 10.1109/ACCESS.2017.2719048 |
[10] | Y. Zhao, H. Z. Wang, L. Xiao, Investigation of fault‐tolerant capability of five‐phase doubly salient electromagnetic generator, IET Electri. Power Appl., 9 (2015), 80–93. https://doi.org/10.1049/iet-epa.2014.0058 doi: 10.1049/iet-epa.2014.0058 |
[11] | B. H. Chowdhury, S. Chellapilla, Double-fed induction generator control for variable speed wind power generation, Electri. Power Syst. Res., 76 (2006), 786–800. https://doi.org/10.1016/j.epsr.2005.10.013 doi: 10.1016/j.epsr.2005.10.013 |
[12] | J. B. Ekanayake, L. Holdsworth, X. G. Wu, N. Jenkins, Dynamic modeling of doubly fed induction generator wind turbines, IEEE Trans. Power Syst., 18 (2003), 803–809. https://doi.org/10.1109/TPWRS.2003.811178 doi: 10.1109/TPWRS.2003.811178 |
[13] | N. Hiron, N. Busaeri, S. Sutisna, N. Nurmela, A. Sambas, Design of hybrid (PV-Diesel) system for tourist island in Karimunjawa Indonesia, Energies, 14 (2021), 8311. https://doi.org/10.3390/en14248311 doi: 10.3390/en14248311 |
[14] | A. Dahbi, M. Hachemi, N. Nait-Said, M. S. Nait-Said, Realization and control of a wind turbine connected to the grid by using PMSG, Energy Convers. Manage., 84 (2014), 346–353. https://doi.org/10.1016/j.enconman.2014.03.085 doi: 10.1016/j.enconman.2014.03.085 |
[15] | A. Jain, S. Shankar, V. Vanitha, Power generation using permanent magnet synchronous generator (PMSG) based variable speed wind energy conversion system (WECS): An overview, J. Green Eng., 7 (2017), 477–504. https://doi.org/10.13052/jge1904-4720.742 doi: 10.13052/jge1904-4720.742 |
[16] | N. A. Orlando, M. Liserre, R. A. Mastromauro, A. Dell'Aquila, A survey of control issues in PMSG-based small wind-turbine systems, IEEE Tran. Ind. Inform., 9 (2013), 1211–1221. https://doi.org/10.1109/TII.2013.2272888 doi: 10.1109/TII.2013.2272888 |
[17] | K. Tan, S. Islam, Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors, IEEE Tran. Energy Convers., 19 (2004), 392–399. https://doi.org/10.1109/TEC.2004.827038 doi: 10.1109/TEC.2004.827038 |
[18] | H. W. Kim, S. S. Kim, H. S. Ko, Modeling and control of PMSG-based variable-speed wind turbine, Electri. Power Syst. Res., 80 (2010), 46–52. https://doi.org/10.1016/j.epsr.2009.08.003 doi: 10.1016/j.epsr.2009.08.003 |
[19] | M. Mansour, M. N. Mansouri, S. Bendoukha, M. F. Mimouni, A grid-connected variable-speed wind generator driving a fuzzy-controlled PMSG and associated to a flywheel energy storage system, Electri. Power Syst. Res., 180 (2020), 106137. https://doi.org/10.1016/j.epsr.2019.106137 doi: 10.1016/j.epsr.2019.106137 |
[20] | A. Honarbari, S. Najafi-Shad, M. S. Pour, S. S. M. Ajarostaghi, A. Hassannia, MPPT improvement for PMSG-based wind turbines using extended Kalman filter and fuzzy control system, Energies, 14 (2021), 7503. https://doi.org/10.3390/en14227503 doi: 10.3390/en14227503 |
[21] | L. Z. Ren, T. F. Lei, H. Chen, R. Wang, Optimal control research for the wind turbine PMSG chaos motion, Appl. Mech. Mater., 543 (2014), 1291–1295. https://doi.org/10.4028/www.scientific.net/AMM.543-547.1291 doi: 10.4028/www.scientific.net/AMM.543-547.1291 |
[22] | M. Messadi, A. Mellit, K. Kemih, M. Ghanes, Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system, Chinese Phys. B, 24 (2015), 010502. https://doi.org/10.1088/1674-1056/24/1/010502 doi: 10.1088/1674-1056/24/1/010502 |
[23] | G. Q. Si, J. W. Zhu, L. J. Diao, Z. Q. Ding, Modeling, nonlinear dynamic analysis and control of fractional PMSG of wind turbine, Nonlinear Dyna., 88 (2017), 985–1000. https://doi.org/10.1007/s11071-016-3289-9 doi: 10.1007/s11071-016-3289-9 |
[24] | G. A. Alamdar, S. Balochian, Chaos control of permanent magnet synchronous generator via sliding mode controller, Majlesi J. Electr. Eng., 13 (2019), 1–5. |
[25] | X. C. Hu, S. H. Luo, L. Zhao, H. H. Ma, Adaptive backstepping control of the PMSG based on the T2SFNN, In: 2020 Chinese automation congress, 2020. https://doi.org/10.1109/CAC51589.2020.9326471 |
[26] | S. Kahla, M. Bechouat, T. Amieur, M. Sedraoui, B. Babes, N. Hamouda, Maximum power extraction framework using robust fractional-order feedback linearization control and GM-CPSO for PMSG-based WECS, Wind Eng., 45 (2021), 1040–1054. https://doi.org/10.1177/0309524X20948263 doi: 10.1177/0309524X20948263 |
[27] | S. H. Luo, X. Ch. Hu, L. Zhao, S. B. Li, Event-triggered neural adaptive backstepping control of the K chaotic PMSGs coupled system, Internat, J. Electr. Power Energy Syst., 135 (2022), 107475. https://doi.org/10.1016/j.ijepes.2021.107475 doi: 10.1016/j.ijepes.2021.107475 |
[28] | H. Takhi, L. Moysis, N. Machkour, C. Volos, K. Kemih, M. Ghanes, Predictive control and synchronization of uncertain perturbed chaotic permanent-magnet synchronous generator and its microcontroller implementation, Eur. Phys. J. Spec. Top., 231 (2022), 443–451. https://doi.org/10.1140/epjs/s11734-021-00422-4 doi: 10.1140/epjs/s11734-021-00422-4 |
[29] | E. H. Dursun, H. Koyuncu, A. A. Kulaksiz, A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives, Eng. Sci. Technol. Int. J., 24 (2021), 158–170. https://doi.org/10.1016/j.jestch.2020.05.005 doi: 10.1016/j.jestch.2020.05.005 |
[30] | L. Shanmugam, Y. H. Joo, Stabilization of permanent magnet synchronous generator-based wind turbine system via fuzzy-based sampled-data control approach, Inform. Sci., 559 (2021), 270–285. https://doi.org/10.1016/j.ins.2020.12.088 doi: 10.1016/j.ins.2020.12.088 |
[31] | A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9 |
[32] | H. Gritli, S. Belghith, Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map, Chaos, Solitons Fractals, 98 (2017), 72–87. https://doi.org/10.1016/j.chaos.2017.03.004 doi: 10.1016/j.chaos.2017.03.004 |
[33] | D. Clemente-López, E. Tlelo-Cuautle, L. G. de la Fraga, J. de Jesús Rangel-Magdaleno, J. M. Munoz-Pacheco, Poincaré maps for detecting chaos in fractional-order systems with hidden attractors for its Kaplan-Yorke dimension optimization, AIMS Mathematics, 7 (2022), 5871–5894. https://doi.org/10.3934/math.2022326 doi: 10.3934/math.2022326 |
[34] | S. Vaidyanathan, A. Sambas, E. Tlelo-Cuautle, A. A. Abd El-Latif, B. Abd-El-Atty, O. Guillén-Fernández, et al., A new 4-D multi-stable hyperchaotic system with no balance point: Bifurcation analysis, circuit simulation, FPGA realization and image cryptosystem, IEEE Access, 9 (2021), 144555–144573. https://doi.org/10.1109/ACCESS.2021.3121428 doi: 10.1109/ACCESS.2021.3121428 |
[35] | K. Benkouider, T. Bouden, A. Sambas, M. A. Mohamed, I. M. Sulaiman, M. Mamat, et al., Dynamics, control and secure transmission electronic circuit implementation of a new 3D chaotic system in comparison with 50 reported systems, IEEE Access, 9 (2021), 152150–152168. https://doi.org/10.1109/ACCESS.2021.3126655 doi: 10.1109/ACCESS.2021.3126655 |
[36] | A. Sambas, M. Mamat, S. Vaidyanathan, M. Mohamed, M. Sanjaya, A new 4-D chaotic system with hidden attractor and its circuit implementation, Int. J. Eng. Technol., 7 (2018), 1245–1250. https://doi.org/10.14419/ijet.v7i3.9846 doi: 10.14419/ijet.v7i3.9846 |
[37] | J. Tavoosi, M. Shirkhani, A. Abdali, A. Mohammadzadeh, M. Nazari, S. Mobayen, et al., A new general type-2 fuzzy predictive scheme for PID tuning, Appl. Sci., 11 (2021), 10392. https://doi.org/10.3390/app112110392 doi: 10.3390/app112110392 |
[38] | A. Mohammadzadeh, H. Taghavifar, A novel adaptive control approach for path tracking control of autonomous vehicles subject to uncertain dynamics, Proc. Inst. Mech. Eng. D-J. Aut. Eng., 234 (2020), 2115–2126. https://doi.org/10.1177/0954407019901083 doi: 10.1177/0954407019901083 |