Research article

Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses

  • Received: 25 September 2022 Revised: 07 November 2022 Accepted: 11 November 2022 Published: 06 December 2022
  • MSC : 34B10, 34K40, 34K45, 47H10

  • This paper is concerned with the study of nonlocal fractional differential equation of sobolev type with impulsive conditions. An associated integral equation is obtained and then considered a sequence of approximate integral equations. By utilizing the techniques of Banach fixed point approach and analytic semigroup, we obtain the existence and uniqueness of mild solutions to every approximate solution. Then, Faedo-Galerkin approximation is used to establish certain convergence outcome for approximate solutions. In order to illustrate the abstract results, we present an application as a conclusion.

    Citation: M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran. Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses[J]. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229

    Related Papers:

  • This paper is concerned with the study of nonlocal fractional differential equation of sobolev type with impulsive conditions. An associated integral equation is obtained and then considered a sequence of approximate integral equations. By utilizing the techniques of Banach fixed point approach and analytic semigroup, we obtain the existence and uniqueness of mild solutions to every approximate solution. Then, Faedo-Galerkin approximation is used to establish certain convergence outcome for approximate solutions. In order to illustrate the abstract results, we present an application as a conclusion.



    加载中


    [1] K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Solitons Fractals, 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
    [2] H. M. Ahmed, H. M. El-Owaidy, M. A. AL-Nahhas, Neutral fractional stochastic partial differential equations with Clarke subdifferential, Appl. Anal., 100 (2021), 3220–3232. https://doi.org/10.1080/00036811.2020.1714035 doi: 10.1080/00036811.2020.1714035
    [3] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
    [4] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-holland mathematics studies, Amsterdam: Elsevier, 204 (2006), 1–523.
    [6] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, In: Mathematics in Science and Engineering, San Diego: Academic Press, 198 (1999), 1–340.
    [7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993.
    [8] V. Daftardar-Gejji, Fractional calculus: theory and applications, Narosa Publishing House, 2014.
    [9] P. Agarwal, D. Baleanu, Y. Q. Chen, S. Momani, J. A. T. Machado, Fractional Calculus, In: Springer proceedings in mathematics and statistics, 2019.
    [10] V. Vijayaraj, C. Ravichandran, T. Botmart, K. S. Nisar, K. Jothimani, Existence and data dependence results for neutral fractional order integro-differential equations, AIMS Mathematics, 8 (2023), 1055–1071. https://doi.org/10.3934/math.2023052 doi: 10.3934/math.2023052
    [11] K. S. Nisar, C. Ravichandran, A. H. Abdel-Aty, I. S. Yahia, C. Park, Case study on total controllability and optimal control of Hilfer netural non-instantaneous fractional derivative, Fractals, 30 (2022), 2240187. https://doi.org/10.1142/S0218348X22401879 doi: 10.1142/S0218348X22401879
    [12] K. Kaliraj, K. S. Viswanath, K. Logeswari, C. Ravichandran, Analysis of fractional integro-differential equation with Robin boundary conditions using topological degree method, Int. J. Appl. Comput. Math., 8 (2022), 176. https://doi.org/10.1007/s40819-022-01379-1 doi: 10.1007/s40819-022-01379-1
    [13] K. S. Nisar, K. Logeswari, V. Vijayaraj, H. M. Baskonus, C. Ravichandran, Fractional order modeling the Gemini virus in capsicum annuum with optimal control, Fractal Fract., 6 (2022), 61. https://doi.org/10.3390/fractalfract6020061 doi: 10.3390/fractalfract6020061
    [14] K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numer. Methods Partial Differential Equations, 24 (2020). https://doi.org/10.1002/num.22652 doi: 10.1002/num.22652
    [15] S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
    [16] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U
    [17] C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnosel'Skii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 75. https://doi.org/10.3390/fractalfract6020075 doi: 10.3390/fractalfract6020075
    [18] K. Kumar, R. Patel, V. Vijayakumar, A. Shukla, C. Ravichandran, A discussion on boundary controllability of nonlocal impulsive neutral integrodifferential evolution equations, Math. Methods Appl. Sci., 45 (2022), 8193–8215. https://doi.org/10.1002/mma.8117 doi: 10.1002/mma.8117
    [19] K. Kaliraj, M. Manjula, C. Ravichandran, New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions, Chaos Solitons Fractals, 161 (2022), 112284. https://doi.org/10.1016/j.chaos.2022.112284 doi: 10.1016/j.chaos.2022.112284
    [20] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real. Appl., 11 (2010), 4465–4475. https://doi.org/10.1016/j.nonrwa.2010.05.029 doi: 10.1016/j.nonrwa.2010.05.029
    [21] P. K. L. Priya, K. Kaliraj, An application of fixed point technique of Rothe's-type to interpret the controllability criteria of neutral nonlinear fractional ordered impulsive system, Chaos Solitons Fractals, 164 (2022), 112647. https://doi.org/10.1016/j.chaos.2022.112647 doi: 10.1016/j.chaos.2022.112647
    [22] K. Kaliraj, E. Thilakraj, C. Ravichandran, K. S. Nisar, Controllability analysis for impulsive integro-differential equation via Atangana-Baleanu fractional derivative, Mathe. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7693 doi: 10.1002/mma.7693
    [23] X. P. Zhang, Y. X. Li, P. Y. Chen, Existence of extremal mild solutions for the initial value problem of evolution equations with non-instantaneous impulses, J. Fixed Point Theory Appl., 19 (2017), 3013–3027. https://doi.org/10.1007/s11784-017-0467-4 doi: 10.1007/s11784-017-0467-4
    [24] A. Shukla, V. Vijayakumar, K. S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r\in(1, 2)$, Chaos Solitons Fractals, 154 (2022), 111615. https://doi.org/10.1016/j.chaos.2021.111615 doi: 10.1016/j.chaos.2021.111615
    [25] K. D. Kucche, P. U. Shikhare, On impulsive delay integrodifferential equations with integral impulses, Mediterr. J. Math., 17 (2020), 103.
    [26] A. Debbouche, J. J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 245 (2014), 74–85. https://doi.org/10.1016/j.amc.2014.07.073 doi: 10.1016/j.amc.2014.07.073
    [27] K. Liu, M. Feckan, J. R. Wang, A class of $(\omega, T)$-periodic solutions for impulsive evolution equations of Sobolev type, Bull. Iran. Math. Soc., 48 (2022), 2743–2763. https://doi.org/10.1007/s41980-021-00666-9 doi: 10.1007/s41980-021-00666-9
    [28] F. Li, J. Liang, H. K. Xu, Existence of mild solutions for fractional integro-differential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 391 (2012), 510–525. https://doi.org/10.1016/j.jmaa.2012.02.057 doi: 10.1016/j.jmaa.2012.02.057
    [29] H. M. Ahmed, M. A. Ragusa, Nonlocal controllability of Sobolev-type conformable fractional stochastic evolution inclusions with Clarke subdifferential, B. Malays. Math. Sci. Soc., 45 (2022), 3239–3253. https://doi.org/10.1007/s40840-022-01377-y doi: 10.1007/s40840-022-01377-y
    [30] H. M. Ahmed, Sobolev-type fractional stochastic integrodifferential equations with nonlocal conditions in Hilbert space, J. Theoret. Probab., 30 (2017), 771–783.
    [31] R. Göthel, D. S. Jones, Faedo-Galerkin approximations in equations of evolution, Math. Methods Appl. Sci., 6 (1984), 41–54. https://doi.org/10.1002/mma.1670060104 doi: 10.1002/mma.1670060104
    [32] P. D. Miletta, Approximation of solutions to evolution equations, Math. Methods Appl. Sci., 17 (1994), 753–763. https://doi.org/10.1002/mma.1670171002 doi: 10.1002/mma.1670171002
    [33] M. Muslim, R. P. Agarwal, Approximation of solutions to impulsive functional differential equations, J. Appl. Math. Comput., 34 (2010), 101–112. http://doi.org/10.1007/s12190-009-0310-1 doi: 10.1007/s12190-009-0310-1
    [34] A. Raheem, M. Kumar, Approximate solutions of nonlinear nonlocal fractional impulsive differential equations via Faedo-Galerkin method, J. Fract. Calc. Appl., 12 (2021), 172–187.
    [35] M. M. Raja, V. Vijayakumar, R. Udhayakumar, Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order $1 < r < 2$ in Hilbert spaces, Chaos Solitons Fractals, 141 (2020), 110310. https://doi.org/10.1016/j.chaos.2020.110310 doi: 10.1016/j.chaos.2020.110310
    [36] A. Chaddha, D. N. Pandey, Approximations of solutions for an impulsive fractional differential equation with a deviated argument, Int. J. Appl. Comput. Math., 2 (2016), 269–289. http://doi.org/10.1007/s40819-015-0059-1 doi: 10.1007/s40819-015-0059-1
    [37] A. Chadha, D. Bahuguna, D. N. Pandey, Faedo-Galerkin approximate solutions for nonlocal fractional differential equation of Sobolev type, Fract. Differential Calc., 8 (2018), 205–222. https://doi.org/10.7153/fdc-2018-08-13 doi: 10.7153/fdc-2018-08-13
    [38] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983.
    [39] K. Kaliraj, M. Manjula, C. Ravichandran, K. S. Nisar, Results on neutral differential equation of Sobolev type with nonlocal conditions, Chaos Solitons Fractals, 158 (2022), 112060. https://doi.org/10.1016/j.chaos.2022.112060 doi: 10.1016/j.chaos.2022.112060
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1307) PDF downloads(78) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog