Graphs give a mathematical model of molecules, and thery are used extensively in chemical investigation. Strategically selections of graph invariants (formerly called "topological indices" or "molecular descriptors") are used in the mathematical modeling of the physio-chemical, pharmacologic, toxicological, and other aspects of chemical compounds. This paper describes a new technique to compute topological indices of two types of chemical networks. Our research examines the mathematical characteristics of molecular descriptors, particularly those that depend on graph degrees. We derive a compact mathematical analysis and neighborhood multiplicative topological indices for product of graphs ($ \mathcal{L} $) and tetrahedral diamond lattices ($ \Omega $). In this paper, the fifth multiplicative Zagreb index, the general fifth multiplicative Zagreb index, the fifth multiplicative hyper-Zagreb index, the fifth multiplicative product connectivity index, the fifth multiplicative sum connectivity index, the fifth multiplicative geometric-arithmetic index, the fifth multiplicative harmonic index and the fifth multiplicative redefined Zagreb index are determined. The comparison study of these topological indices is also discussed.
Citation: Ali Al Khabyah. Mathematical aspects and topological properties of two chemical networks[J]. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230
Graphs give a mathematical model of molecules, and thery are used extensively in chemical investigation. Strategically selections of graph invariants (formerly called "topological indices" or "molecular descriptors") are used in the mathematical modeling of the physio-chemical, pharmacologic, toxicological, and other aspects of chemical compounds. This paper describes a new technique to compute topological indices of two types of chemical networks. Our research examines the mathematical characteristics of molecular descriptors, particularly those that depend on graph degrees. We derive a compact mathematical analysis and neighborhood multiplicative topological indices for product of graphs ($ \mathcal{L} $) and tetrahedral diamond lattices ($ \Omega $). In this paper, the fifth multiplicative Zagreb index, the general fifth multiplicative Zagreb index, the fifth multiplicative hyper-Zagreb index, the fifth multiplicative product connectivity index, the fifth multiplicative sum connectivity index, the fifth multiplicative geometric-arithmetic index, the fifth multiplicative harmonic index and the fifth multiplicative redefined Zagreb index are determined. The comparison study of these topological indices is also discussed.
[1] | A. Ullah, M. Qasim, S. Zaman, A. Khan, Computational and comparative aspects of two carbon nanosheets with respect to some novel topological indices, Ain Shams Eng. J., 13 (2022), 101672. https://doi.org/10.1016/j.asej.2021.101672 doi: 10.1016/j.asej.2021.101672 |
[2] | M. Ghorbani, M. A. Hosseinzadeh, Computing $ABC{}_{4}$ index of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun., 4 (2010), 1419–1422. |
[3] | U. Ahmad, A. Sarfraz, R. Yousaf, Computation of Zagreb and atom bond connectivity indices of certain families of dendrimers by using automorphism, J. Serb. Chem. Soc., 82 (2017), 151–162. https://doi.org/10.2298/JSC160718096A doi: 10.2298/JSC160718096A |
[4] | R. Natarajan, P. Kamalakanan, I. Nirdosh, Applications of topological indices to structure-activity relationship modelling and selection of mineral collectors, Indian J. Chem. Sect. A, 42 (2003), 1330–1346. |
[5] | O. Mekenyan, D. Bonchev, A. Sabljic, N. Trinajstic, Applications of topological indices to QSAR. The use of the Balaban index and the electropy index for correlations with toxicity of Ethers on Mice, Acta Pharm. Jugosl., 37 (1987), 75–86. |
[6] | S. C. Basak, D. Mills, B. D. Gute, G. D. Grunwald, A. T. Balaban, Applications of topological indices in the property/bioactivity/toxicity prediction of chemicals, Topol. Chem., 2002,113–184. https://doi.org/10.1533/9780857099617.113 doi: 10.1533/9780857099617.113 |
[7] | V. R. Kulli, General fifth M-Zagreb indices and fifth M-Zagreb polynomials of Pamam dendrimers, Int. J. Fuzzy Math. Arch., 13 (2017), 99–103. https://doi.org/10.22457/ijfma.v13n1a10 doi: 10.22457/ijfma.v13n1a10 |
[8] | S. Akhter, M. Imran, On degree-based topological descriptors of strong product graphs, Can. J. Chem., 94 (2016), 559–565. https://doi.org/10.1139/cjc-2015-0562 doi: 10.1139/cjc-2015-0562 |
[9] | S. Akhter, M. Imran, On molecular topological properties of benzenoid structures, Can. J. Chem., 94 (2016), 687–698. https://doi.org/10.1139/cjc-2016-0032 doi: 10.1139/cjc-2016-0032 |
[10] | S. Mondal, N. De, A. Pal, W. Gao, Molecular descriptors of some chemicals that prevent COVID-19, Curr. Org. Synth., 18 (2021), 729–741. https://doi.org/10.1139/cjc-2016-0032 doi: 10.1139/cjc-2016-0032 |
[11] | J. Wei, M. Cancan, A. U. Rehman, M. K. Siddiqui, M. Nasir, M. T. Younas, et al., On topological indices of remdesivir compound used in treatment of Corona Virus (COVID 19), Polycyclic Aromat. Compd., 42 (2021), 1–19. https://doi.org/10.1080/10406638.2021.1887299 doi: 10.1080/10406638.2021.1887299 |
[12] | S. Akhter, M. Imran, M. R. Farahani, I. Javaid, On topological properties of hexagonal and silicate networks, Hacettepe J. Math. Stat., 48 (2019), 711–723. https://doi.org/10.15672/HJMS.2017.541 doi: 10.15672/HJMS.2017.541 |
[13] | R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, University of Kragujevac, 2010. |
[14] | E. A. Refaee, A. Ahmad, A study of hexagon star network with vertex-edge based topological descriptors, Complexity, 2021 (2021), 9911308. https://doi.org/10.1155/2021/9911308 doi: 10.1155/2021/9911308 |
[15] | M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, Match Commun. Math. Comput. Chem., 68 (2012), 217–230. |
[16] | I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka, 18 (2011), 17–23. |
[17] | J. Liu, Q. Zhang, Sharp upper bounds on multiplicative Zagreb indices, Match Commun. Math. Comput. Chem., 68 (2012), 231–240. |
[18] | K. Xu, H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, Match Commun. Math. Comput. Chem., 68 (2012), 241–256. |
[19] | J. B. Liu, C. Wang, S. Wang, B. Wei. Zagreb indices and multiplicative Zagreb indices of Eulerian graphs, Bull. Malays. Math. Sci. Soc., 42 (2019), 67–78. https://doi.org/10.1007/s40840-017-0463-2 doi: 10.1007/s40840-017-0463-2 |
[20] | A. A. Khabyah, S. Zaman, A. N. A. Koam, A. Ahmad, A. Ullah, Minimum Zagreb eccentricity indices of two-mode network with applications in boiling point and Benzenoid Hydrocarbons, Mathematics, 10 (2022), 1393. https://doi.org/10.3390/math10091393 doi: 10.3390/math10091393 |
[21] | S. Akhter, M. Imran, W. Gao, M. R. Farahani, On topological indices of honeycomb networks and graphene networks, Hacettepe J. Math. Stat., 47 (2018), 19–35. https://doi.org/10.15672/HJMS.2017.464 doi: 10.15672/HJMS.2017.464 |
[22] | V. R. Kulli, Some new multiplicative geometric-arithmetic indices, J. Ultra Sci. Phys. Sci. Sect. A, 29 (2017), 52–57. https://doi.org/10.22147/jusps-A/290201 doi: 10.22147/jusps-A/290201 |
[23] | P. Sarkar, N. De, A. Pal, On some neighbourhood degree-based multiplicative topological indices and their applications, Polycyclic Aromat. Compd., 42 (2021), 1–16. https://doi.org/10.1080/10406638.2021.2007141 doi: 10.1080/10406638.2021.2007141 |
[24] | A. Ahmad, M. Baca, Total edge irregularity strength of a categorical product of two paths, Ars Comb., 114 (2014), 203–212. |
[25] | A. Ahmad, M. Baca, M. K. Siddiqui, Irregular total labelings of disjoint union of prisms and cycles, Australas. J. Comb., 59 (2014), 98–106. |
[26] | T. Vetrík, A. Ahmad, Computing the metric dimension of the categorial product of graphs, Int. J. Comput. Math., 94 (2017), 363–371. https://doi.org/10.1080/00207160.2015.1109081 doi: 10.1080/00207160.2015.1109081 |
[27] | M. J. A. Khan, M. Ibrahim, A. Ahmad, On edge irregular reflexive labeling of categorical product of two paths, Comput. Syst. Sci. Eng., 36 (2021), 485–492, https://doi.org/10.32604/csse.2021.014810 doi: 10.32604/csse.2021.014810 |
[28] | A. Ahmad, Upper bounds of irregularity measures of categorical product of two connected graphs, Palest. J. Math., 9 (2020), 26–30. |
[29] | S. Ahtsham, U. Bokhary, M. Imran, S. Akhter, S. Manzoor, Molecular topological invariants of certain chemical networks, Main Group Met. Chem., 44 (2021), 141–149. https://doi.org/10.1515/mgmc-2021-0010 doi: 10.1515/mgmc-2021-0010 |