Research article

A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications

  • Received: 27 July 2022 Revised: 13 November 2022 Accepted: 23 November 2022 Published: 05 December 2022
  • MSC : 90C30, 90C06, 90C56

  • Many problems arising from science and engineering are in the form of a system of nonlinear equations. In this work, a new derivative-free inertial-based spectral algorithm for solving the system is proposed. The search direction of the proposed algorithm is defined based on the convex combination of the modified long and short Barzilai and Borwein spectral parameters. Also, an inertial step is introduced into the search direction to enhance its efficiency. The global convergence of the proposed algorithm is described based on the assumption that the mapping under consideration is Lipschitz continuous and monotone. Numerical experiments are performed on some test problems to depict the efficiency of the proposed algorithm in comparison with some existing ones. Subsequently, the proposed algorithm is used on problems arising from robotic motion control.

    Citation: Sani Aji, Aliyu Muhammed Awwal, Ahmadu Bappah Muhammadu, Chainarong Khunpanuk, Nuttapol Pakkaranang, Bancha Panyanak. A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications[J]. AIMS Mathematics, 2023, 8(2): 4442-4466. doi: 10.3934/math.2023221

    Related Papers:

  • Many problems arising from science and engineering are in the form of a system of nonlinear equations. In this work, a new derivative-free inertial-based spectral algorithm for solving the system is proposed. The search direction of the proposed algorithm is defined based on the convex combination of the modified long and short Barzilai and Borwein spectral parameters. Also, an inertial step is introduced into the search direction to enhance its efficiency. The global convergence of the proposed algorithm is described based on the assumption that the mapping under consideration is Lipschitz continuous and monotone. Numerical experiments are performed on some test problems to depict the efficiency of the proposed algorithm in comparison with some existing ones. Subsequently, the proposed algorithm is used on problems arising from robotic motion control.



    加载中


    [1] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141–148. https://doi.org/10.1093/imanum/8.1.141 doi: 10.1093/imanum/8.1.141
    [2] W. La Cruz, M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Software, 18 (2002), 583–599. https://doi.org/10.1080/10556780310001610493 doi: 10.1080/10556780310001610493
    [3] H. Mohammad, A. M. Awwal, Globally convergent diagonal Polak–Ribière–Polyak like algorithm for nonlinear equations, Numer. Algor., 91 (2022), 1441–1460. https://doi.org/10.1007/s11075-022-01309-8 doi: 10.1007/s11075-022-01309-8
    [4] W. La Cruz, J. Martínez, M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput., 75 (2006), 1429–1448. https://doi.org/10.1090/S0025-5718-06-01840-0 doi: 10.1090/S0025-5718-06-01840-0
    [5] S. P. Dirkse, M. J. Ferris, A collection of nonlinear mixed complementarity problems, Optim. Methods Soft., 5 (1995), 319–345. https://doi.org/10.1080/10556789508805619 doi: 10.1080/10556789508805619
    [6] A. M. Awwal, P. Kumam, K. Sitthithakerngkiet, A. M. Bakoji, A. S. Halilu, I. M. Sulaiman, Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application, AIMS Math., 6 (2021), 8792–8814. https://doi.org/10.3934/math.2021510 doi: 10.3934/math.2021510
    [7] A. J. Wood, B. F. Wollenberg, G. B. Sheblé, Power generation, operation, and control, John Wiley & Sons, 2013.
    [8] A. S. Halilu, A. Majumder, M. Y. Waziri, A. M. Awwal, K. Ahmed, On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, Comput. Appl. Math., 40 (2021), 239. https://doi.org/10.1007/s40314-021-01624-1 doi: 10.1007/s40314-021-01624-1
    [9] K. Meintjes, A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333–361. https://doi.org/10.1016/0096-3003(87)90076-2 doi: 10.1016/0096-3003(87)90076-2
    [10] I. M. Sulaiman, A. M. Awwal, M. Malik, N. Pakkaranang, B. Panyanak, A derivative-free MZPRP projection method for convex constrained nonlinear equations and its application in compressive sensing, Mathematics, 10 (2022), 2884. https://doi.org/10.3390/math10162884 doi: 10.3390/math10162884
    [11] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J. Selected Topics Signal Process., 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
    [12] Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for $\ell_1$-norm problems with applications to compressed sensing, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040 doi: 10.1016/j.na.2011.02.040
    [13] N. Pakkaranang, P. Kumam, V. Berinde, Y. I. Suleiman, Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery, J. Supercomput., 76 (2020), 9456–9477. https://doi.org/10.1007/s11227-020-03215-z doi: 10.1007/s11227-020-03215-z
    [14] Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319. https://doi.org/10.1016/j.jmaa.2013.04.017 doi: 10.1016/j.jmaa.2013.04.017
    [15] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, K. Sitthithakerngkiet, An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery, AIMS Math., 6 (2021), 8078–8106. https://doi.org/10.3934/math.2021469 doi: 10.3934/math.2021469
    [16] A. B. Abubakar, P. Kumam, H. Mohammad, A. M. Awwal, A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration, J. Franklin Inst., 357 (2020), 7266–7285. https://doi.org/10.1016/j.jfranklin.2020.04.022 doi: 10.1016/j.jfranklin.2020.04.022
    [17] A. M. Awwal, P. Kumam, H. Mohammad, W. Watthayu, A. B. Abubakar, A {Perry-type} derivative-free algorithm for solving nonlinear system of equations and minimizing $\ell_1$ regularized problem, Optimization, 70 (2021), 1231–1259. https://doi.org/10.1080/02331934.2020.1808647 doi: 10.1080/02331934.2020.1808647
    [18] M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: M. Fukushima, L. Qi, Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, Springer, 22 (1998), 355–369. https://doi.org/10.1007/978-1-4757-6388-1_18
    [19] L. Zhang, W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478–484. https://doi.org/10.1016/j.cam.2005.10.002 doi: 10.1016/j.cam.2005.10.002
    [20] Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416–2423. https://doi.org/10.1016/j.apnum.2009.04.004 doi: 10.1016/j.apnum.2009.04.004
    [21] Z. Yu, L. Li, P. Li, A family of modified spectral projection methods for nonlinear monotone equations with convex constraint, Math. Probl. Eng., 2020 (2020), 2018243. https://doi.org/10.1155/2020/2018243 doi: 10.1155/2020/2018243
    [22] A. M. Awwal, P. Kumam, L. Wang, S. Huang, W. Kumam, Inertial-based derivative-free method for system of monotone nonlinear equations and application, IEEE Access, 8 (2020), 226921–226930. https://doi.org/10.1109/ACCESS.2020.3045493 doi: 10.1109/ACCESS.2020.3045493
    [23] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, W. Kumam, Two hybrid spectral methods with inertial effect for solving system of nonlinear monotone equations with application in robotics, IEEE Access, 9 (2021), 30918–30928. https://doi.org/10.1109/ACCESS.2021.3056567 doi: 10.1109/ACCESS.2021.3056567
    [24] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [25] A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91–100.
    [26] N. Pakkaranang, P. Kumam, Y. I. Suleiman, B. Ali, Bounded perturbation resilience of viscosity proximal algorithm for solving split variational inclusion problems with applications to compressed sensing and image recovery, Math. Methods Appl. Sci., 45 (2022), 4085–4107. https://doi.org/10.1002/mma.7023 doi: 10.1002/mma.7023
    [27] G. Mastroeni, On auxiliary principle for equilibrium problems, In: P. Daniele, F. Giannessi, A. Maugeri, Equilibrium problems and variational models, Springer, 68 (2003), 289–298. https://doi.org/10.1007/978-1-4613-0239-1_15
    [28] A. M. Awwal, P. Kumam, A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 145 (2019), 507–520. https://doi.org/10.1016/j.apnum.2019.05.012 doi: 10.1016/j.apnum.2019.05.012
    [29] A. M. Awwal, L. Wang, P. Kumam, H. Mohammad, W. Watthayu, A projection Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal processing, Math. Comput. Appl., 25 (2020), 27. https://doi.org/10.3390/mca25020027 doi: 10.3390/mca25020027
    [30] W. J. Zhou, D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comput., 77 (2008), 2231–2240. https://doi.org/10.1090/S0025-5718-08-02121-2 doi: 10.1090/S0025-5718-08-02121-2
    [31] A. A. Muhammed, P. Kumam, A. B. Abubakar, A. Wakili, N. Pakkaranang, A new hybrid spectral gradient projection method for monotone system of nonlinear equations with convex constraints, Thai J. Math., 16 (2018), 125–147.
    [32] J. Liu, Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algor., 82 (2019) 245–262. https://doi.org/10.1007/s11075-018-0603-2 doi: 10.1007/s11075-018-0603-2
    [33] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
    [34] Y. Qiang, F. Jing, J. Zeng, Z. Hou, Dynamic modeling and vibration mode analysis for an industrial robot with rigid links and flexible joints, 2012 24th Chinese Control and Decision Conference (CCDC), IEEE, 2012. https://doi.org/10.1109/CCDC.2012.6244526
    [35] Y. Zhang, W. Li, B. Qiu, Y. Ding, D. Zhang, Three-state space reformulation and control of md-included one-link robot system using direct-derivative and zhang-dynamics methods, 2017 29th Chinese Control and Decision Conference (CCDC), IEEE, 2017. https://doi.org/10.1109/CCDC.2017.7979152
    [36] G. Y. Tang, L. Sun, C. Li, M. Q. Fan, Successive approximation procedure of optimal tracking control for nonlinear similar composite systems, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 631–641. https://doi.org/10.1016/j.na.2008.01.021 doi: 10.1016/j.na.2008.01.021
    [37] E. M. Jafarov, M. N. A. Parlakci, Y. Istefanopulos, A new variable structure pid-controller design for robot manipulators, IEEE T. Control Syst. Technol., 13 (2004) 122–130. https://doi.org/10.1109/TCST.2004.838558 doi: 10.1109/TCST.2004.838558
    [38] V. Parra-Vega, S. Arimoto, Y. H. Liu, G. Hirzinger, P. Akella, Dynamic sliding pid control for tracking of robot manipulators: theory and experiments, IEEE T. Robot. Autom., 19 (2003), 967–976. https://doi.org/10.1109/TRA.2003.819600 doi: 10.1109/TRA.2003.819600
    [39] J. Na, X. Ren, D. Zheng, Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer, IEEE T. Neur. Net. Lear. Syst., 24 (2013), 370–382. https://doi.org/10.1109/TNNLS.2012.2225845 doi: 10.1109/TNNLS.2012.2225845
    [40] B. S. Chen, H. J. Uang, C. S. Tseng, Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach, IEEE T. Fuzzy Syst., 6 (1998), 538–552. https://doi.org/10.1109/91.728449 doi: 10.1109/91.728449
    [41] G. Y. Tang, Y. D. Zhao, B. L. Zhang, Optimal output tracking control for nonlinear systems via successive approximation approach, Nonlinear Anal.: Theory Methods Appl., 66 (2007), 1365–1377. https://doi.org/10.1016/j.na.2006.01.021 doi: 10.1016/j.na.2006.01.021
    [42] Y. Zhang, L. He, C. Hu, J. Guo, J. Li, Y. Shi, General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization, J. Comput. Appl. Math., 347 (2019), 314–329. https://doi.org/10.1016/j.cam.2018.08.017 doi: 10.1016/j.cam.2018.08.017
    [43] M. Sun, J. Liu, Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020), 9175496. https://doi.org/10.1155/2020/9175496 doi: 10.1155/2020/9175496
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1197) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog