We introduce an $ \mathcal{M-} $class function in an $ \mathcal{S-} $metric space which is a viable, productive, and powerful technique for finding the existence of a fixed point and fixed circle. Our conclusions unify, improve, extend, and generalize numerous results to a widespread class of discontinuous maps. Next, we introduce notions of a fixed ellipse (elliptic disc) in an $ \mathcal{S}- $metric space to investigate the geometry of the collection of fixed points and prove fixed ellipse (elliptic disc) theorems. In the sequel, we validate these conclusions with illustrative examples. We explore some conditions which eliminate the possibility of the identity map in the existence of an ellipse (elliptic disc). Some remarks, propositions, and examples to exhibit the feasibility of the results are presented. The paper is concluded with a discussion of activation functions that are discontinuous in nature and, consequently, utilized in a neural network for increasing the storage capacity. Towards the end, we solve the satellite web coupling problem and propose two open problems.
Citation: Meena Joshi, Anita Tomar, Thabet Abdeljawad. On fixed points, their geometry and application to satellite web coupling problem in $ \mathcal{S}- $metric spaces[J]. AIMS Mathematics, 2023, 8(2): 4407-4441. doi: 10.3934/math.2023220
We introduce an $ \mathcal{M-} $class function in an $ \mathcal{S-} $metric space which is a viable, productive, and powerful technique for finding the existence of a fixed point and fixed circle. Our conclusions unify, improve, extend, and generalize numerous results to a widespread class of discontinuous maps. Next, we introduce notions of a fixed ellipse (elliptic disc) in an $ \mathcal{S}- $metric space to investigate the geometry of the collection of fixed points and prove fixed ellipse (elliptic disc) theorems. In the sequel, we validate these conclusions with illustrative examples. We explore some conditions which eliminate the possibility of the identity map in the existence of an ellipse (elliptic disc). Some remarks, propositions, and examples to exhibit the feasibility of the results are presented. The paper is concluded with a discussion of activation functions that are discontinuous in nature and, consequently, utilized in a neural network for increasing the storage capacity. Towards the end, we solve the satellite web coupling problem and propose two open problems.
[1] | A. Ali, E. Ameer, M. Arshad, H. Işık, M. Mudhesh, Fixed point results of dynamic process Ď$(\gamma, \mu_{0})$ through $F^{C}_{I}-$contractions with applications, Complexity, 2022 (2022), 8495451. https://doi.org/10.1155/2022/8495451 doi: 10.1155/2022/8495451 |
[2] | M. Altanji, A. Santhi, V. Govindan, S. S. Santra, S. Noeiaghdam, Fixed-point results related to $b-$intuitionistic fuzzy metric space, J. Funct. Spaces, 2022, (2022), 9561906. https://doi.org/10.1155/2022/9561906 doi: 10.1155/2022/9561906 |
[3] | H. Aydi, N. Taş, N. Y. Özgür, N. Mlaiki, Fixed-discs in rectangular metric spaces, Symmetry, 11 (2019), 294. https://doi.org/10.3390/sym11020294 doi: 10.3390/sym11020294 |
[4] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équation intégrales, Fund. Math., 3 (1922), 133–181. |
[5] | S. Beloul, A. Tomar, M. Joshi, On solutions to open problems and Volterra-Hammerstein non-linear integral equation, Appl. Math. E-Notes., unpublished work. |
[6] | J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Am. Math. Soc., 215 (1976), 241–251. https://doi.org/10.1090/S0002-9947-1976-0394329-4 doi: 10.1090/S0002-9947-1976-0394329-4 |
[7] | S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 6 (1972), 727–730. |
[8] | L. B. Ćirić, Generalised contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 9–26. |
[9] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. |
[10] | H. A. Hammad, M. Elmursi, R. A. Rashwan, H. Işık, Applying fixed point methodologies to solve a class of matrix difference equations for a new class of operators, Adv. Contin. Discrete Models, 2022 (2022), 1–16. https://doi.org/10.1186/s13662-022-03724-6 doi: 10.1186/s13662-022-03724-6 |
[11] | G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0 |
[12] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38 |
[13] | M. Joshi, A. Tomar, H. A. Nabwey, R. George, On unique and non-unique fixed points and fixed circles in $\mathcal{M}_v^b-$metric space and application to cantilever beam problem, J. Funct. Spaces, 2021 (2021), 6681044. https://doi.org/10.1155/2021/6681044 doi: 10.1155/2021/6681044 |
[14] | M. Joshi, A. Tomar, S. K. Padaliya, On geometric properties of non-unique fixed points in $b-$metric spaces, In: Fixed point theory and its applications to real world problem, New York: Nova Science Publishers, 2021, 33–50. |
[15] | M. Joshi, A. Tomar, S. K. Padaliya, Fixed point to fixed disc and application in partial metric spaces, In: Fixed point theory and its applications to real world problem, New York: Nova Science Publishers, 2021,391–406. |
[16] | M. Joshi, A. Tomar, S. K. Padaliya, Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Appl. Math. E-Notes, 21 (2021), 225–237 |
[17] | M. Joshi, A. Tomar, On unique and non-unique fixed points in metric spaces and application to chemical sciences, J. Funct. Spaces, 2021 (2021), 5525472. https://doi.org/10.1155/2021/5525472 doi: 10.1155/2021/5525472 |
[18] | M. Joshi, A. Tomar, Near fixed point, near fixed interval circle and their equivalence classes in a $b-$interval metric space, J. Nonlinear Anal. Appl., 13 (2022), 1999–2014. http://dx.doi.org/10.22075/ijnaa.2021.21721.2291 doi: 10.22075/ijnaa.2021.21721.2291 |
[19] | I. Stakgold, M. Hoist, Green's functions and boundary value problems, John Wiley & Sons, 2011. |
[20] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. |
[21] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. http://dx.doi.org/10.2298/fil1506189k doi: 10.2298/fil1506189k |
[22] | N. Mlaki, U. Çelik, N. Taş, N. Y. Özgür, A. Mukheimer, Wardowski type contractions and the fixed-circle problem on $\mathcal{S}-$metric spaces, J. Math., 2018 (2018), 9127486. https://doi.org/10.1155/2018/9127486 doi: 10.1155/2018/9127486 |
[23] | N. Mlaiki, N. Y. Özgür, N. Taş, New fixed-point theorems on an $\mathcal{S}-$metric space via simulation functions, Mathematics, 7 (2019), 583. https://doi.org/10.3390/math7070583 doi: 10.3390/math7070583 |
[24] | M. Nazam, H. Işik, K. Javed, M. Naeem, M. Arshad, The existence of fixed points for a different type of contractions on partial $b-$metric spaces, J. Math., 2021 (2021), 5158552. https://doi.org/10.1155/2021/5158552 doi: 10.1155/2021/5158552 |
[25] | X. Nie, J. Liang, J. Cao, Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays, Appl. Math. Comput., 356 (2019), 449–468. https://doi.org/10.1016/j.amc.2019.03.026 doi: 10.1016/j.amc.2019.03.026 |
[26] | N. Y. Özgür, N. Taş, Fixed-circle problem on $\mathcal{S}-$metric spaces with a geometric viewpoint, Ser. Math. Inform., 34 (2019), 459–472. |
[27] | N. Y. Özgür, N. Taş, U. Çelik, New fixed-circle results on $\mathcal{S}-$metric spaces, Bull. Math. Anal. Appl., 9 (2017), 10–23. |
[28] | N. Y. Özgür, N. Taş, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conf. Proc., 1926 (2018), 020048. |
[29] | N. Y. Özgür, N. Taş, Generalization of metric spaces: from the fixed-point theory to the fixed-circle theory, In: T. Rassias, Applications of nonlinear analysis, Springer, 134 (2018), 847–895. https://doi.org/10.1007/978-3-319-89815-5_28 |
[30] | N. Y. Özgür, N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 1433–1449. |
[31] | T. Phaneendra, K. K. Swamy, Fixed points of Chatterjee contractions on an $\mathcal{S}-$metric space, Int. J. Pure Appl. Math., 115 (2017), 361–367. https://doi.org/10.12732/ijpam.v115i2.13 doi: 10.12732/ijpam.v115i2.13 |
[32] | S. Petwal, A. Tomar, M. Joshi, On unique and non-unique fixed point in parametric $N_b-$metric Spaces with application, Acta Univ. Sapientiae Math., unpublished work. |
[33] | T. Phaneendra, Banach and Kannan contractions on $\mathcal{S}-$metric space, Ital. J. Pure Appl. Math., 39 (2018), 243–247. |
[34] | S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9 |
[35] | B. E. Rhoades, Contractive definitions and continuity, In: R. F. Brown, Fixed point theory and its applications, Contemporary Mathematics, 72 (1988), 233–245. |
[36] | M. Sarwar, Z. Islam, H. Ahmad, H. Işık, S. Noeiaghdam, Near-common fixed point result in cone interval $b-$metric spaces over Banach algebras, Axioms, 10 (2021), 251. https://doi.org/10.3390/axioms10040251 doi: 10.3390/axioms10040251 |
[37] | S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in $\mathcal{S}-$metric spaces, Mat. Vesnik, 64 (2012), 258–266. |
[38] | N. Taş, Suzuki-Berinde type fixed-point and fixed-circle results on $\mathcal{S}-$metric spaces, J. Linear. Topol. Algebra, 7 (2018), 233–244. |
[39] | A. Tomar, M. Joshi, Near fixed point, near fixed interval circle and near fixed interval disc in metric interval space, In: Fixed point theory and its applications to real world problem, New York: Nova Science Publishers, 2021,131–150. |
[40] | A. Tomar, M. Joshi, S. K. Padaliya, Fixed point to fixed circle and activation function in partial metric space, J. Appl. Anal., 28 (2022), 57–66. https://doi.org/10.1515/jaa-2021-2057 doi: 10.1515/jaa-2021-2057 |
[41] | L. Wang, T. Chen, Multistability of neural networks with Mexican-hat-type activation functions, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1816–1826. https://doi.org/10.1109/TNNLS.2012.2210732 doi: 10.1109/TNNLS.2012.2210732 |
[42] | M. Zhou, X. Liu, N. Saleem, A. Fulga, N. Özgür, A new study on the fixed point sets of Proinov-type contractions via rational forms, Symmetry, 14 (2022), 93. https://doi.org/10.3390/sym14010093 doi: 10.3390/sym14010093 |
[43] | M. Zhou, X. Liu, A. H. Ansari, Y. J. Cho, S. Radenović, Generalized Ulam-Hyers stability for generalized types of $(\psi-\gamma)-$Meir-Keeler mappings via fixed point theory in $\mathcal{S}-$metric spaces, J. Comput. Anal. Appl., 27 (2019), 593–628. |
[44] | M. Zhou, X. Liu, S. Radenović, $\mathcal{S}-\gamma-\Phi-\varphi-$contractive type mappings in $\mathcal{S}-$metric spaces, J. Nonlinear Anal. Appl., 10 (2017), 1613–1639. http://dx.doi.org/10.22436/jnsa.010.04.27 doi: 10.22436/jnsa.010.04.27 |
[45] | M. Zhou, X. Liu, On coupled common fixed point theorem for nonlinear contractions with the mixed weakly monotone property in partially ordered $\mathcal{S}-$metric space, J. Funct. Spaces, 2016 (2016), 7529523. https://doi.org/10.1155/2016/7529523 doi: 10.1155/2016/7529523 |
[46] | M. Zhou, X. Liu, D. Diana, B. Damjanovic, Coupled coincidence point results for Geraghty-type contraction using monotone property in partially ordered $\mathcal{S}-$metric space, J. Nonlinear Anal. Appl., 9 (2016), 5950–5969. http://dx.doi.org/10.22436/jnsa.009.12.04 doi: 10.22436/jnsa.009.12.04 |