Research article Special Issues

Solitary wave solutions to Gardner equation using improved tan$ \left(\frac{\Omega(\Upsilon)}{2}\right) $-expansion method

  • Received: 30 August 2022 Revised: 30 September 2022 Accepted: 07 October 2022 Published: 05 December 2022
  • MSC : 49Q10, 53A04

  • In this study, the improved tan$ \left(\frac{\Omega(\Upsilon)}{2}\right) $-expansion method is used to construct a variety of precise soliton and other solitary wave solutions of the Gardner equation. Gardner equation is extensively utilized in plasma physics, quantum field theory, solid-state physics and fluid dynamics. It is the simplest model for the description of water waves with dual power law nonlinearity. Hyperbolic, exponential, rational and trigonometric traveling wave solutions are obtained. The retrieved solutions include kink solitons, bright solitons, dark-bright solitons and periodic wave solutions. The efficacy of this method is determined by the comparison of the newly obtained results with already reported results.

    Citation: Ghazala Akram, Maasoomah Sadaf, Mirfa Dawood, Muhammad Abbas, Dumitru Baleanu. Solitary wave solutions to Gardner equation using improved tan$ \left(\frac{\Omega(\Upsilon)}{2}\right) $-expansion method[J]. AIMS Mathematics, 2023, 8(2): 4390-4406. doi: 10.3934/math.2023219

    Related Papers:

  • In this study, the improved tan$ \left(\frac{\Omega(\Upsilon)}{2}\right) $-expansion method is used to construct a variety of precise soliton and other solitary wave solutions of the Gardner equation. Gardner equation is extensively utilized in plasma physics, quantum field theory, solid-state physics and fluid dynamics. It is the simplest model for the description of water waves with dual power law nonlinearity. Hyperbolic, exponential, rational and trigonometric traveling wave solutions are obtained. The retrieved solutions include kink solitons, bright solitons, dark-bright solitons and periodic wave solutions. The efficacy of this method is determined by the comparison of the newly obtained results with already reported results.



    加载中


    [1] H. P. Dai, W. Tan, Deformation characteristics of three-wave solutions and lump N-solitons to the (2+1)-dimensional generalized KdV equation, Eur. Phys. J. Plus, 135 (2020), 239.
    [2] G. Akram, N. Sajid, The investigation of exact solutions of Korteweg-de Vries equation with dual power law nonlinearity using the exp$_{a}$ and exp$(-\Phi(\xi))$ methods, Internat. J. Comput. Math., 99 (2021). https://doi.org/10.1080/00207160.2021.1923014 doi: 10.1080/00207160.2021.1923014
    [3] N. Sajid, G. Akram, The application of the exp$(-\Phi(\xi))$-expansion method for finding the exact solutions of two integrable equations, Math. Probl. Eng., 2018 (2018), 5191736. https://doi.org/10.1155/2018/5191736 doi: 10.1155/2018/5191736
    [4] D. Kumar, S. Kumar, Solitary wave solutions of pZK equation using Lie point symmetries, Eur. Phys. J. Plus, 135 (2020), 162. http://doi.org/10.1140/epjp/s13360-020-00218-w doi: 10.1140/epjp/s13360-020-00218-w
    [5] J. Sabi'u, H. Rezazadeh, H. Tariq, A. Bekir, Optical solitons for the two forms of Biswas-Arshed equation, Modern Phys. Lett. B, 33 (2019), 1950308. https://doi.org/10.1142/S0217984919503081 doi: 10.1142/S0217984919503081
    [6] N. Faraz, M. Sadaf, G.Akram, I. Zainab, Y. Khan, Effects of fractional order time derivative on the solitary wave dynamics of the generalized ZK-Burgers equation, Results Phys., 25 (2021), 104217. https://doi.org/10.1016/j.rinp.2021.104217 doi: 10.1016/j.rinp.2021.104217
    [7] M. Sadaf, G. Akram, Effects of fractional order derivative on the solution of time-fractional Cahn-Hilliard equation arising in digital image inpainting, Indian J. Phys., 95 (2021), 891–899.
    [8] M. Sadaf, G. Akram, An improved daptation of homotopy analysis method, Math. Sci., 11 (2017), 55–62. https://doi.org/10.1007/s40096-016-0204-y doi: 10.1007/s40096-016-0204-y
    [9] H. Tariq, G. Akram, New traveling wave exact and approximate solutions for the nonlinear Cahn-Allen equation: evolution of a nonconserved quantity, Nonlinear Dyn., 88 (2017), 581–594.
    [10] E. Yaşar, Y. Yıldırım, A. R. Adem, Extended transformed rational function method to nonlinear evolution equations, Int. J. Nonlinear Sci. Numer. Simulation, 20 (2019), 691–701. https://doi.org/10.1515/ijnsns-2018-0286 doi: 10.1515/ijnsns-2018-0286
    [11] G. Akram, M. Sadaf, N. Anum, Solutions of time-fractional Kudryashov-Sinelshchikov equation arising in the pressure waves in the liquid with gas bubbles, Opt. Quantum Electronics, 49 (2017), 373.
    [12] H. Tariq, H. Günerhan, H. Rezazadeh, W. Adel, A numerical approach for the nonlinear temporal conformable fractional foam drainage equation, Asian Eur. J. Math., 14 (2020), 2150089. https://doi.org/10.1142/S1793557121500893 doi: 10.1142/S1793557121500893
    [13] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chinese J. Phys., 56 (2018), 2805–2816. https://doi.org/10.1016/j.cjph.2018.08.001 doi: 10.1016/j.cjph.2018.08.001
    [14] X. J. Yang, F. Gao, J. A. T. Machado, D. Baleanu, Exact travelling wave solutions for local fractional partial differential equations in mathematical physics, In: Nonlinear systems and complexity, 24 (2019).
    [15] N. T. Fadai, M. J. Simpson, New travelling wave solutions of the Porous-Fisher model with a moving boundary, J. Phys. A, 53 (2020), 095601. https://doi.org/10.1088/1751-8121/ab6d3c doi: 10.1088/1751-8121/ab6d3c
    [16] A. Biswas, C. Cleary, J. E. W. Jr, D. Milovic, Optical soliton perturbation with time-dependent coefficients in a log law media, Appl. Math. Comput., 217 (2010), 2891–2894. https://doi.org/10.1016/j.amc.2010.07.032 doi: 10.1016/j.amc.2010.07.032
    [17] A. J. M. Jawad, The sine-cosine function method for the exact solutions of nonlinear partial differential equations, Internat. J. Res. Rev. Appl. Sci., 13 (2012), 186–191.
    [18] W. T. Yu, Q. Zhou, M. Mirzazadeh, W. J. Liu, A. Biswas, Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics, J. Adv. Res., 15 (2019), 69–76. https://doi.org/10.1016/j.jare.2018.09.001 doi: 10.1016/j.jare.2018.09.001
    [19] K. Hosseini, M. Mirzazadeh, J. F. Gómez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 224 (2020), 165425. https://doi.org/10.1016/j.ijleo.2020.165425 doi: 10.1016/j.ijleo.2020.165425
    [20] M. S. Osman, K. K. Ali, Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations, Optik, 209 (2020), 164589. https://doi.org/10.1016/j.ijleo.2020.164589 doi: 10.1016/j.ijleo.2020.164589
    [21] A. I. Aliyu, F. Tchier, M. Inc, A. Yusuf, D. Baleanu, Dynamics of optical solitons, multipliers and conservation laws to the nonlinear Schrödinger equation in $(2+1)$-dimensions with non-Kerr law nonlinearity, J. Modern Opt., 66 (2019), 136–142. https://doi.org/10.1080/09500340.2018.1512676 doi: 10.1080/09500340.2018.1512676
    [22] A. R. Alharbi, M. B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
    [23] M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
    [24] G. Griffiths, W. E. Schiesser, Traveling wave analysis of partial differential equations: numerical and analytical methods with MATLAB and Maple, Academic Press, 2010. https://doi.org/10.1016/C2009-0-64536-0
    [25] Z. T. Fu, S. D. Liu, S. K. Liu, New kinds of solutions to Gardner equation, Chaos Solitons Fractals, 20 (2004), 301–309. https://doi.org/10.1016/S0960-0779(03)00383-7 doi: 10.1016/S0960-0779(03)00383-7
    [26] G. Q. Xu, Z. B. Li, Y. P. Liu, Exact solutions to a large class of nonlinear evolution equations, Chinese J. Phys., 41 (2003), 232–241.
    [27] Z. Y. Yan, Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method, J. Phys. A, 36 (2003), 1961–1972. https://doi.org/10.1088/0305-4470/36/7/311 doi: 10.1088/0305-4470/36/7/311
    [28] J. Manafian, M. Lakestani, Application of tan ($\phi$/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040–2054. https://doi.org/10.1016/j.ijleo.2015.11.078 doi: 10.1016/j.ijleo.2015.11.078
    [29] J. Manafian, M. Foroutan, Application of tan (phi/2)-expansion method for the time-fractional Kuramoto-Sivashinsky equation, Opt. Quantum Electronics, 49 (2017), 272.
    [30] Y. S. Özkan, E. Yaşar, On the exact solutions of nonlinear evolution equations by the improved tan (phi/2)-expansion method, Pramana, 94 (2020), 37.
    [31] J. Manafian, M. Lakestani, A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach, Interna J. Appl. Comput. Math., 2 (2016), 243–268.
    [32] R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204–1209. https://doi.org/10.1063/1.1664701 doi: 10.1063/1.1664701
    [33] R. M. Miura, A derivation of Gardner's equation, Methods Appl. Anal., 4 (1997), 134–140. https://doi.org/10.4310/MAA.1997.v4.n2.a3 doi: 10.4310/MAA.1997.v4.n2.a3
    [34] A. M. Wazwaz, New solitons and kink solutions for the Gardner equation, Commun. nonlinear sci. Numer. Simul., 12 (2007), 1395–1404. https://doi.org/10.1016/j.cnsns.2005.11.007 doi: 10.1016/j.cnsns.2005.11.007
    [35] X. W. Gao, J. Liu, Z. T. Li, New exact kink solutions, solitons and periodic form solutions for the Gardner equation, Adv. Appl. Math. Sci., 2010.
    [36] B. Ghanbari, D. Baleanu, New solutions of Gardner's equation using two analytical methods, Front. Phys., 7 (2019), 202. https://doi.org/10.3389/fphy.2019.00202 doi: 10.3389/fphy.2019.00202
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1414) PDF downloads(94) Cited by(5)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog