Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In this paper, we propose a new modified proximal point algorithm for solving minimization problems and common fixed point problems in CAT(0) spaces. We prove $ \Delta $ and strong convergence of the proposed algorithm. Our results extend and improve the corresponding recent results in the literature.
Citation: Chanchal Garodia, Izhar Uddin, Bahaaeldin Abdalla, Thabet Abdeljawad. A modified proximal point algorithm in geodesic metric space[J]. AIMS Mathematics, 2023, 8(2): 4304-4320. doi: 10.3934/math.2023214
Proximal point algorithm is one of the most popular technique to find either zero of monotone operator or minimizer of a lower semi-continuous function. In this paper, we propose a new modified proximal point algorithm for solving minimization problems and common fixed point problems in CAT(0) spaces. We prove $ \Delta $ and strong convergence of the proposed algorithm. Our results extend and improve the corresponding recent results in the literature.
[1] | B. Martinet, Régularisation d'inéuations variationnelles par approximations successives, Rev. Fr. Inform. Rech. Oper., 4 (1970), 154–158. |
[2] | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1977), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056 |
[3] | H. Brézis, P. Lions, Produits infinis de résolvantes, Israel J. Math., 29 (1978), 329–345. https://doi.org/10.1007/BF02761171 doi: 10.1007/BF02761171 |
[4] | O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403–419. https://doi.org/10.1137/0329022 doi: 10.1137/0329022 |
[5] | S. Kamimura, W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J Approx. Theory, 106 (2000), 226–240. https://doi.org/10.1006/jath.2000.3493 doi: 10.1006/jath.2000.3493 |
[6] | B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957–961. https://doi.org/10.1090/S0002-9904-1967-11864-0 doi: 10.1090/S0002-9904-1967-11864-0 |
[7] | O. P. Ferreira, P. R. Oliveir, Proximal point algorithm on Riemannian manifolds, Optimization, 51 (2002), 257–270. https://doi.org/10.1080/02331930290019413 doi: 10.1080/02331930290019413 |
[8] | C. Li, G. López, V. Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc., 79 (2009), 663–683. https://doi.org/10.1112/jlms/jdn087 doi: 10.1112/jlms/jdn087 |
[9] | E. A. Papa Quiroz, P. R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds, J. Convex Anal., 16 (2009), 49–69. |
[10] | J. H. Wang, G. López, Modified proximal point algorithms on Hadamard manifolds, Optimization, 60 (2011), 697–708. https://doi.org/10.1080/02331934.2010.505962 doi: 10.1080/02331934.2010.505962 |
[11] | R. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens, M. Shub, Newton's method on Riemannian manifolds and a geometric model for human spine, IMA J. Numer. Anal., 22 (2002), 359–390. https://doi.org/10.1093/imanum/22.3.359 doi: 10.1093/imanum/22.3.359 |
[12] | S. T. Smith, Optimization techniques on Riemannian manifolds, In: A. Bloch, Fields institute communications, American Mathematical Society, Providence, 3 (1994), 113–146. |
[13] | C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, Mathematics and its Applications, Vol. 297, Springer Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8390-9 |
[14] | J. H. Wang, C. Li, Convergence of the family of Euler-Halley type methods on Riemannian manifolds under the $\gamma$-condition, Taiwan. J. Math., 13 (2009), 585–606. https://doi.org/10.11650/twjm/1500405357 doi: 10.11650/twjm/1500405357 |
[15] | M. Bačák, The proximal point algorithm in metric spaces, Israel. J. Math., 194 (2013), 689–701. https://doi.org/10.1007/s11856-012-0091-3 doi: 10.1007/s11856-012-0091-3 |
[16] | D. P. Bertsekas, Incremental proximal methods for large scale convex optimization, Math Program., 129 (2011), 163–195. https://doi.org/10.1007/s10107-011-0472-0 doi: 10.1007/s10107-011-0472-0 |
[17] | P. Cholamjiak, A. A. N. Abdou, Y. J. Cho, Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., 2015 (2015), 227. https://doi.org/10.1186/s13663-015-0465-4 doi: 10.1186/s13663-015-0465-4 |
[18] | P. Cholamjiak, The modified proximal point algorithm in CAT(0) spaces, Optim. Lett., 9 (2015), 1401–1410. https://doi.org/10.1007/s11590-014-0841-8 doi: 10.1007/s11590-014-0841-8 |
[19] | M. T. Heydari, S. Ranjbar, Halpern-type proximal point algorithm in complete CAT(0) metric spaces, An. Ştiinţ. Univ. Ovidius Constanta Ser. Mat., 24 (2016), 141–159. https://doi.org/10.1515/auom-2016-0052 doi: 10.1515/auom-2016-0052 |
[20] | S. Khatoon, W. Cholamjiak, I. Uddin, A modified proximal point algorithm involving nearly asymptotically quasi-nonexpansive mappings, J. Inequal. Appl., 2021 (2021), 83. https://doi.org/10.1186/s13660-021-02618-7 doi: 10.1186/s13660-021-02618-7 |
[21] | S. Khatoon, I. Uddin, M. Basarir, A modified proximal point algorithm for a nearly asymptotically quasi-nonexpansive mapping with an application, Comput. Appl. Math., 40 (2021), 250. https://doi.org/10.1007/s40314-021-01646-9 doi: 10.1007/s40314-021-01646-9 |
[22] | W. Takahashi, Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Jpn., 43 (2000), 87–108. https://doi.org/10.15807/jorsj.43.87 doi: 10.15807/jorsj.43.87 |
[23] | I. Uddin, J. J. Nieto, J. Ali, One-step iteration scheme for multivalued nonexpansive mappings in CAT(0) spaces, Mediterr. J. Math., 13 (2016), 1211–1225. https://doi.org/10.1007/s00009-015-0531-5 doi: 10.1007/s00009-015-0531-5 |
[24] | N. V. Dung, N. T. Hieu, Convergence of a new three-step iteration process to common fixed points of three $G$-nonexpansive mappings in Banach spaces with directed graphs, RACSAM, 114 (2020), 140. https://doi.org/10.1007/s13398-020-00872-w doi: 10.1007/s13398-020-00872-w |
[25] | D. Yambangwai, S. Aunruean, T. Thianwan, A new modified three-step iteration method for G-nonexpansive mappings in Banach spaces with a graph, Numer Algor., 84 (2020), 537–565. https://doi.org/10.1007/s11075-019-00768-w doi: 10.1007/s11075-019-00768-w |
[26] | D. Yambangwai, T. Thianwan, Convergence point of G-nonexpansive mappings in Banach spaces endowed with graphs applicable in image deblurring and signal recovering problems, Ricerche Mat., 2021. https://doi.org/10.1007/s11587-021-00631-y doi: 10.1007/s11587-021-00631-y |
[27] | Y. Kimura, F. Kohsaka, Two modified proximal point algorithms for convex functions in Hadamard spaces, Linear Nonlinear Anal., 2 (2016), 69–86. https://doi.org/10.1186/s13660-018-1713-z doi: 10.1186/s13660-018-1713-z |
[28] | I. Uddin, C. Garodia, S. H. Khan, A proximal point algorithm converging strongly to a minimizer of a convex function, Jordan J. Math. Stat., 13 (2020), 659–685. https://doi.org/10.1137/0329022 doi: 10.1137/0329022 |
[29] | M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Vol. 319, Springer Berlin, Heidelberg, 1999. https://doi.org/10.1007/978-3-662-12494-9 |
[30] | K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1984. |
[31] | U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357 (2015), 89–128. |
[32] | J. Tits, A theorem of Lie-Kolchin for trees, contributions to algebra: a collection of papers dedicated to Ellis Kolchin, New York: Academic Press, 1977. |
[33] | S. Dhompongsa, B. Panyanak, On $\Delta$-convergence theorems in CAT(0) spaces, Comput. Math. with Appl., 56 (2008), 2572–2579. https://doi.org/10.1016/j.camwa.2008.05.036 doi: 10.1016/j.camwa.2008.05.036 |
[34] | S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 65 (2006), 762–772. https://doi.org/10.1016/j.na.2005.09.044 doi: 10.1016/j.na.2005.09.044 |
[35] | W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011 doi: 10.1016/j.na.2007.04.011 |
[36] | S. Dhompongsa, W. A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 65 (2007), 35–45. |
[37] | S. Dhompongsa, A. Kaewkhao, B. Panyanak, On Kirk's strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces, Nonlinear Anal., 75 (2012), 459–468. https://doi.org/10.1016/j.na.2011.08.046 doi: 10.1016/j.na.2011.08.046 |
[38] | D. Ariza-Ruiz, L. Leuştean, G. López, Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc., 366 (2014), 4299–-4322. |
[39] | J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., 70 (1995), 659–673. https://doi.org/10.1007/BF02566027 doi: 10.1007/BF02566027 |
[40] | L. Ambrosio, N. Gigli, G. Savare, Gradient flows in metric spaces and in the space of probability measures, 2 Eds., Birkhäuser, Basel, 2008. |
[41] | U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Commun. Anal. Geom., 6 (1998), 199–253. https://doi.org/10.4310/CAG.1998.v6.n2.a1 doi: 10.4310/CAG.1998.v6.n2.a1 |
[42] | R. T. Rockafellar, R. J. B. Wets, Variational analysis, Springer, Berlin, 2005. |
[43] | S. Suantai, W. Phuengrattana, Proximal point algorithms for a hybrid pair of nonexpansive single-valued and multi-valued mappings in geodesic spaces, Mediterr. J. Math., 14 (2017), 62. https://doi.org/10.1007/s00009-017-0876-z doi: 10.1007/s00009-017-0876-z |
[44] | W. Kumam, D. Kitkuan, A. Padcharoen, P. Kumam, Proximal point algorithm for nonlinear multivalued type mappings in Hadamard spaces, Math. Methods Appl. Sci., 42 (2019), 5758–5768. https://doi.org/10.1002/mma.5552 doi: 10.1002/mma.5552 |
[45] | S. Q. Weng, D. P. Wu, Y. C. Liou, F. Song, Convergence of modified proximal point algorithm in CAT(0) spaces, J. Nonlinear Convex Anal., 21 (2020), 2287–2298. |
[46] | S. Weng, D. Wu, Z. Chao, A modified proximal point algorithm and some convergence results, J. Math., 2021 (2021), 6951062. https://doi.org/10.1155/2021/6951062 doi: 10.1155/2021/6951062 |