Research article

A study on controllability for Hilfer fractional differential equations with impulsive delay conditions

  • Received: 25 September 2022 Revised: 09 November 2022 Accepted: 13 November 2022 Published: 02 December 2022
  • MSC : 93B05, 34K30, 34K40, 47H08, 47H10

  • This article focuses on the controllability of a Hilfer fractional impulsive differential equation with indefinite delay. We analyze our major outcomes using fractional calculus, the measure of non-compactness and a fixed-point approach. Finally, an example is provided to show the theory.

    Citation: Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, Panjaiyan Karthikeyan, Anoop Kumar, Thongchai Botmart, Wajaree Weera. A study on controllability for Hilfer fractional differential equations with impulsive delay conditions[J]. AIMS Mathematics, 2023, 8(2): 4202-4219. doi: 10.3934/math.2023209

    Related Papers:

  • This article focuses on the controllability of a Hilfer fractional impulsive differential equation with indefinite delay. We analyze our major outcomes using fractional calculus, the measure of non-compactness and a fixed-point approach. Finally, an example is provided to show the theory.



    加载中


    [1] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, Berlin: Springer, 2012.
    [2] K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992.
    [3] K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Lectures Notes in Mathematics, Berlin: Springer-Verlag, 2010.
    [4] Y. Guo, C. Xu, Controllability of stochastic delay systems with impulse in a separable Hilbert space, Asian J. Control, 18 (2016), 779–783. https://doi.org/10.1002/asjc.1100 doi: 10.1002/asjc.1100
    [5] A. Kilbas, H. Srivastava, J. J. Truhillo, Theory and applications of fractonal differential equations, Amesterdam: Elseiver, 2006.
    [6] V. S. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [7] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to method of their solution and some of their solution and some of their applications, San Diego: Acdemic Press, 1998.
    [8] Y. Zhou, Fractional evolution equations and inclusions: analysis and control, Academic Press, 2016.
    [9] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution of fractional differential equations with uncertainty, Nonlinear Anal.: Theory, Methods Appl., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [10] Z. Liu, X. Li, On the exact controllability of implusive fractional semilinear fractional differential inclusions, Asian J. Control, 17 (2015), 1857–1865. https://doi.org/10.1002/asjc.1071 doi: 10.1002/asjc.1071
    [11] C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ., 291 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-291 doi: 10.1186/1687-1847-2013-291
    [12] T. Sathiyaraj, P. Balasubramaniam, The controllability of fractional damped stochastic integrodiffrential systems, Asian J. Control, 19 (2017), 1455–1464. https://doi.org/10.1002/asjc.1453 doi: 10.1002/asjc.1453
    [13] N. Valliammal, C. Ravichandran, J. H. Park, On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Math. Methods Appl. Sci., 40 (2017), 5044–5055. https://doi.org/10.1002/mma.4369 doi: 10.1002/mma.4369
    [14] V. Vijayakumar, Approximate controllability results for non-densely defined fractional neutral differential inclusions with Hille-Yosida operators, Int. J. Control, 92 (2019), 2210–2222. https://doi.org/10.1080/00207179.2018.1433331 doi: 10.1080/00207179.2018.1433331
    [15] K. Karthikeyan, J. Reunsumrit, P. Karthikeyan, S. Poornima, D. Tamizharasan, T. Sitthiwirattham, Existence results for impulsive fractional integrodifferential equations involving integral boundary conditions, Math. Probl. Eng., 2022 (2022), 1–12. https://doi.org/10.1155/2022/6599849 doi: 10.1155/2022/6599849
    [16] V. Wattanakejorn, P. Karthikeyan, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Existence solutions for implicit fractional relaxation differential equations with impulsive delay boundary conditions, Axioms, 11 (2022), 611. https://dx.doi.org/10.3390/axioms11110611 doi: 10.3390/axioms11110611
    [17] J. Wang, Z. Fan, Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl., 154 (2012), 292–302. https://doi.org/10.1007/s10957-012-9999-3 doi: 10.1007/s10957-012-9999-3
    [18] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063–1077. https://doi.org/10.1016/j.camwa.2009.06.026 doi: 10.1016/j.camwa.2009.06.026
    [19] K. Karthikeyan, P. Karthikeyan, D. N. Chalishajar, D. Senthil Raja, Analysis on $\Psi$-Hilfer fractional impulsive differential equations, Symmetry, 13 (2021), 1895. https://doi.org/10.3390/sym13101895 doi: 10.3390/sym13101895
    [20] B. Radhakrishnan, T. Sathya, Controllability of Hilfer fractional Langevin dynamical system with impulse in an abstract weighted space, J. Optim. Theory Appl., 195 (2022), 265–281. https://doi.org/10.1007/s10957-022-02081-4 doi: 10.1007/s10957-022-02081-4
    [21] R. Chaudhary, S. Reich, Existence and controllability results for Hilfer fractional evolution equations via integral contractors, Fract. Calc. Appl. Anal., 2022. https://doi.org/10.1007/s13540-022-00099-z
    [22] A. Boudjerida, D. Seba, Controllability of nonlocal Hilfer fractional delay dynamic inclusions with non-instantaneous impulses and non-dense domain, Int. J. Dyn. Control, 10 (2022), 1613–1625. https://doi.org/10.1007/s40435-021-00887-0 doi: 10.1007/s40435-021-00887-0
    [23] K. Sanjay, P. Balasubramaniam, Controllability of Hilfer type fractional evolution neutral integro-differential inclusions with non-instantaneous impulses, Evol. Equ. Control Theory, 2022. https://doi.org/10.3934/eect.2022043
    [24] R. Hilfer, Experimental evidence for fractional time evolutin in glass material, Chem. Phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [25] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional neutral differential derivatives, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [26] K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos, Solitons Fract., 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
    [27] K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nair, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Methods Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
    [28] R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandtan, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. https://doi.org/10.1016/j.aej.2020.01.055 doi: 10.1016/j.aej.2020.01.055
    [29] V. Vijayakumar, R. Udhayakumar, Results on approximate controllability for non-denesely defined Hilfer fractional differential system with infinite delay, Chaos, Solitions Fract., 139 (2020), 110019. https://doi.org/10.1016/j.chaos.2020.110019 doi: 10.1016/j.chaos.2020.110019
    [30] A. Jajarmi, D. Baleanu, On the fractional optimal control problems with a genaral derivative operator, Asian J. Control, 23 (2021), 1062–1071. https://doi.org/10.1002/asjc.2282 doi: 10.1002/asjc.2282
    [31] J. Klamka, Controllability of dynamical systems, Mathematics and its Applications, Netherlands: Springer, 1991.
    [32] J. Klamka, Relative controllabilty of nonlinear systems with distributed delay in control, Automatica, 12 (1976), 633–634. https://doi.org/10.1016/0005-1098(76)90046-7 doi: 10.1016/0005-1098(76)90046-7
    [33] J. Klamka, Controllabillity of nonlinear systems with distributed delay in control, Int. J. Control, 31 (1980), 811–819. https://doi.org/10.1080/00207178008961084 doi: 10.1080/00207178008961084
    [34] K. Kavitha, V. Vijayakumar, R. Udhayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite elay via measures of noncompactness, Asian J. Control, 72 (2020), 1–10.
    [35] B. Yan, Boundary value problems on the half-line with impluses and infinite delay, J. Math. Anal. Appl., 259 (2001), 94–114. https://doi.org/10.1006/jmaa.2000.7392 doi: 10.1006/jmaa.2000.7392
    [36] J. L. Zhou, S. Q. Zhang, Y. B. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921
    [37] J. L. Zhou, S. Q. Zhang, Y. B. He, Existence and stability of solution for a nonlinear differential equations with Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457
    [38] Y. B. He, X. Lin, Numerical analysis and simulations for coupled nonlinear Schr$\ddot{o}$dinger equations based on lattice Boltzmann method, Appl. Math. Lett., 106 (2020), 106391. https://doi.org/10.1016/j.aml.2020.106391 doi: 10.1016/j.aml.2020.106391
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1519) PDF downloads(98) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog