In this manuscript, the concept of rational-type multivalued F−contraction mappings is investigated. In addition, some nice fixed point results are obtained using this concept in the setting of MM−spaces and ordered MM−spaces. Our findings extend, unify, and generalize a large body of work along the same lines. Moreover, to support and strengthen our results, non-trivial and extensive examples are presented. Ultimately, the theoretical results are involved in obtaining a positive, definite solution to nonlinear matrix equations as an application.
Citation: Muhammad Tariq, Eskandar Ameer, Amjad Ali, Hasanen A. Hammad, Fahd Jarad. Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations[J]. AIMS Mathematics, 2023, 8(2): 3842-3859. doi: 10.3934/math.2023191
[1] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[2] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[3] | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824 |
[4] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[5] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[6] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
[7] | Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079 |
[8] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[9] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[10] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
In this manuscript, the concept of rational-type multivalued F−contraction mappings is investigated. In addition, some nice fixed point results are obtained using this concept in the setting of MM−spaces and ordered MM−spaces. Our findings extend, unify, and generalize a large body of work along the same lines. Moreover, to support and strengthen our results, non-trivial and extensive examples are presented. Ultimately, the theoretical results are involved in obtaining a positive, definite solution to nonlinear matrix equations as an application.
The classical Hermite-Hadamard inequality is one of the most well-established inequalities in the theory of convex functions with geometrical interpretation and it has many applications. This inequality may be regarded as a refinement of the concept of convexity. Hermite-Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable refinements and generalizations have been studied [1,2].
The importance of the study of set-valued analysis from a theoretical point of view as well as from their applications is well known. Many advances in set-valued analysis have been motivated by control theory and dynamical games. Optimal control theory and mathematical programming were an engine driving these domains since the dawn of the sixties. Interval analysis is a particular case and it was introduced as an attempt to handle interval uncertainty that appears in many mathematical or computer models of some deterministic real-world phenomena.
Furthermore, a few significant inequalities like Hermite-Hadamard and Ostrowski type inequalities have been established for interval valued functions in recent years. In [3,4], Chalco-Cano et al. established Ostrowski type inequalities for interval valued functions by using Hukuhara derivatives for interval valued functions. In [5], Román-Flores et al. established Minkowski and Beckenbach's inequalities for interval valued functions. For other related results we refer to the readers [6].
In this paper, we establish Hermite-Hadamard type inequalities and He's inequality for interval-valued exponential type pre-invex functions in the Riemann-Liouville interval-valued fractional operator settings.
We begin with recalling some basic concepts and notions in the convex analysis.
Let the space of all intervals of ℜ is ℜc and Λ∈ℜc given by
Λ1=[Λ↔,↔Λ]={v∈ℜ|Λ↔<v<↔Λ},Λ↔,↔Λ∈ℜ. |
Various binary operations are given as follows [7]:
Scalar multiplication: τ∈ℜ,
τ.Λ1={[τΛ↔,τ↔Λ],if0≤τ,0,ifτ=0,[τ↔Λ,τΛ↔],ifτ≤0. |
Difference, addition, product and reciprocal for Λ1,Λ2∈ℜc are respectively given by
Λ1−Λ2=[Λ1↔,↔Λ1]−[Λ2↔,↔Λ2]=[Λ1↔−Λ2↔,↔Λ1−↔Λ2],Λ1+Λ2=[Λ1↔,↔Λ1]+[Λ2↔,↔Λ2]=[Λ1↔+Λ2↔,↔Λ1+↔Λ2],Λ1×Λ2=[min{Λ1↔Λ2↔,↔Λ1Λ2↔,Λ1↔↔Λ2,↔Λ1↔Λ2},max{Λ1↔Λ2↔,↔Λ1Λ2↔,Λ1↔↔Λ2,↔Λ1↔Λ2}]={uv|u∈Λ1,v∈Λ2},1Λ={1v1|0≠v1∈Λ}=[1Λ↔,1↔Λ],Λ1.1Λ2={u.1v|u∈Λ1,0≠v∈Λ2}=[Λ1↔.1↔Λ2,↔Λ1.1↔Λ2]. |
Let ℜΛ,ℜ+Λandℜ−Λ denote the collection of all closed intervals of ℜ, the collection of all positive intervals of ℜ and the collection of all negative intervals of ℜ respectively. In this paper, we examine a few algebraic properties of interval arithmetic.
Definition 2.1. [7] A mapping Ω is called an interval-valued function of υ on [a1,b1] if it assigns a nonempty interval to every v∈[a1,b1], that is
Ω(v)=[↔Ω(v),Ω↔(v)], | (2.1) |
where ↔Ω(υ)andΩ↔(υ) are both real valued functions.
Consider any finite ordered subset ∁ be the partition of [a1,b1], that is
∁:a1=a1,...,an=b1. |
The mesh of ∁ is
mesh(∁)=max{ai+1−ai;i=1,...,n}. |
The Riemann sum of Ω:[a1,b1]→ℜΛ can be defined by
˜S(Ω,∁,c)=Σni=1Ω(di)(ai+1−ai), |
where mesh(∁)<c.
Definition 2.2. [8] A mapping Ω:[a1,b1]→ℜΛ is called an interval-Riemann integrable on [a1,b1]if∃Λ∈ℜΛ such that for every δ>0 satisfying
d(˜S(Ω,∁,c),Λ)<δ, |
we have
Λ1=(IR)∫b1a1Ω(v)dv. | (2.2) |
Lemma 2.1. [9] Let Ω:[a1,b1]→ℜΛ be an interval-valued function as in (2.1), then it is interval-Riemann integrable if and only if
(IR)∫b1a1Ω(v)dv=[(R)∫b1a1↔Ω(v)dv,(R)∫b1a1Ω↔(v)dv]. |
In simple words, Ω is interval-Riemann integrable if and only if ↔Ω(v)andΩ↔(v) are both Riemann integrable functions.
Definition 2.3. [10] Let Ω∈L1[a1,b1], then the Riemann-Liouville fractional integrals of order m>0 with 0≤a1 are defined by
Ima+1Ω(v)=1Γ(m)∫va1(v−r)m−1Ω(r)dr,v>a1, | (2.3) |
Imb−1Ω(v)=1Γ(m)∫b1v(r−v)m−1Ω(r)dr,v<b1. | (2.4) |
Definition 2.4. [11,12] Let Ω:[a1,b1]→ℜΛ be an interval-valued, interval-Riemann integrable function as in (2.1), then the interval Riemann-Liouville fractional integrals of order m>0 with 0≤a1 are defined by
Ima+1Ω(v)=1Γ(m)(IR)∫va1(v−r)m−1Ω(r)dr,v>a1, | (2.5) |
Imb−1Ω(v)=1Γ(m)(IR)∫b1v(r−v)m−1Ω(r)dr,v<b1. | (2.6) |
Corollary 2.1. [12] Let Ω:[a1,b1]→ℜΛ be an interval-valued function as in (2.1) such that ↔Ω(v)andΩ↔(v) are Riemann integrable functions, then
Ima+1Ω(v)=[Ima+1Ω↔(v),Ima+1↔Ω(v)], |
Imb−1Ω(v)=[Imb−1Ω↔(v),Imb−1↔Ω(v)]. |
Definition 2.5. [13] A set Λ⊂ℜn with respect to a vector function η:ℜn×ℜn→ℜn is called an invex set if
b1+τη(a1,b1)∈Λ,∀a1,b1∈Λ,τ1∈[0,1]. |
Definition 2.6. [13] A function Ω on the invex set Λ with respect to a vector function η:Λ×Λ→ℜn is called pre-invex function if
Ω(b1+τη(a1,b1))≤(1−τ)Ω(b1)+τΩ(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.7) |
Lemma 2.2. [14,15] If Λ is open and η:Λ×Λ→ℜ, then ∀a1,b1∈Λ,τ,τ1,τ2∈[0,1], we have
η(b1,b1+τη(a1,b1))=−τη(a1,b1), | (2.8) |
η(a1,b1+τη(a1,b1))=(1−τ)η(a1,b1), | (2.9) |
η(b1+τ2η(a1,b1),b1+τ1η(a1,b1))=(τ2−τ1)η(a1,b1). | (2.10) |
In [16], Noor presented Hermite-Hadamard-inequality for pre-invex function, as follows:
Ω(2a1+η(b1,a1)2)≤1η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv≤Ω(a1)+Ω(b1)2. |
Definition 2.7. [15] Let us consider an interval-valued function Ω on the set Λ, then Ω is pre-invex interval valued function with respect to η on an invex set Λ⊂ℜn with respect to a vector function η:Λ×Λ→ℜn if
Ω(b1+τ1η(a1,b1))⊇(1−τ1)Ω(b1)+τ1Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.11) |
Taking motivation from the exponential type convexity proposed in [17], we introduce the following notion:
Definition 2.8. A function Ω on the invex set Λ is called exponential-type pre-invex function with respect to a vector function η:Λ×Λ→ℜn if
Ω(b1+τ1η(a1,b1))≤(e(1−τ1)−1)Ω(b1)+(eτ1−1)Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.12) |
It is important to note that a pre-invex function need not to be convex function. For example, the function f(x)=−|x| is not a convex function but it is a pre-invex function with respect to η, where
η(v,u)={u−v,ifu≤0,v≤0,v≥0,u≥0,v−u,otherwise. |
Theorem 2.1. Let Ω:[a1,b1]→ℜ be an exponential-type pre-invex function with respect to a vector function η:Λ×Λ→ℜn. If a1<b1 and Ω∈L[a1,b1], then we have
12(e12−1)Ω(a1+12η(b1,a1))≤1η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv≤(e−2)[Ω(a1)+Ω(b1)]. |
Proof. At first, from exponential-type-pre-invexity of Ω, we have
Ω(a1+12η(b1,a1))=Ω(12[b1+τ1η(a1,b1)]+12[a1+τ1η(b1,a1)])≤(e12−1)[Ω(b1+τ1η(a1,b1))+Ω(a1+τ1η(b1,a1))]. |
Integrating the above inequality with respect to τ1∈[0,1] yields
Ω(a1+12η(b1,a1))≤(e12−1)(∫10Ω(b1+τ1η(a1,b1))dτ1+∫10Ω(a1+τ1η(b1,a1))dτ1)=2(e12−1)η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv. |
Now, taking v=b1+τ1η(a1,b1) gives
1η(b1,a1)∫a1+η(b1,a1)a1Ω(v)dv=∫10Ω(b1+τ1η(a1,b1))dτ1≤∫10{(eτ1−1)Ω(a1)+(e(1−τ1)−1)Ω(b1)}dτ1=(e−2)[Ω(a1)+Ω(b1)]. |
This completes the proof.
By merging the concepts of pre-invexity and exponential type pre-invexity, we propose the following notion:
Definition 2.9. Let Λ⊂ℜn be an invex set with respect to a vector function η:Λ×Λ→ℜn. The interval valued function Ω on the set Λ is exponential-type pre-invex interval valued function with respect to η if
Ω(b1+τ1η(a1,b1))⊇(e(1−τ1)−1)Ω(b1)+(eτ1−1)Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.13) |
Remark 2.1. In Definition 2.9, by taking h(τ1)=eτ1−1, where h:[0,1]⊂[a1,b1]→ℜ and h≠0, then we get h-pre-invex interval valued function with respect to η, that is
Ω(b1+τ1η(a1,b1))⊇h(1−τ1)Ω(b1)+h(τ1)Ω(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.14) |
Remark 2.2. Let Λ⊂ℜn be an invex set with respect to a vector function η:ℜn×ℜn→ℜn. The interval valued function Ω on the set Λ is exponential-type-pre-invex function with respect to η if and only if ↔Ω,Ω↔ are exponential-type pre-invex functions with respect to η, that is
↔Ω(b1+τ1η(a1,b1))≤(e(1−τ1)−1)↔Ω(b1)+(eτ1−1)↔Ω(a1),∀a1,b1∈Λ,τ1∈[0,1], | (2.15) |
Ω↔(b1+τ1η(a1,b1))≤(e(1−τ1)−1)Ω↔(b1)+(eτ1−1)Ω↔(a1),∀a1,b1∈Λ,τ1∈[0,1]. | (2.16) |
Remark 2.3. If ↔Ω(v)=Ω↔(v), then we get (2.12).
Remark 2.4. Since τ1≤eτ1−1 and 1−τ1≤e1−τ1−1 for all τ1∈[0,1], so every nonnegative pre-invex interval valued function with respect to η is also exponential-type pre-invex interval valued function with respect to η.
In this section, we establish fractional Hermite-Hadamard type inequality for interval-valued exponential type pre-invex. The family of Lebesgue measurable interval-valued functions is denoted by L([v1,v2],ℜ0).
Theorem 3.1. Let Λ⊂ℜ be an open invex set with respect to η:Λ×Λ→ℜ and a1,b1∈Λ with a1<a1+η(b1,a1). If Ω:[a1,a1+η(b1,a1)]→ℜ is an exponential type pre-invex interval-valued function such that Ω∈L[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)
1(e12−1)Ω(c1+12η(d1,c1))⊇Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]⊇mP(Ω(c1+η(d1,c1))+Ω(c1)), | (3.1) |
where
P=−1(m+1)(−1)m[(em+e)(−1)mΓ(m+1,1)+(−m−1)Γ(m+1,−1)+((−em−e)(−1)m+m+1)Γ(m+1)+2(−1)m]. | (3.2) |
Proof. Since Ω is an exponential type pre-invex interval-valued function, so
1(e12−1)Ω(a1+12η(b1,a1))⊇[Ω(a1)+Ω(b1)]. |
Taking a1=c1+(1−τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives
1(e12−1)Ω(c1+(1−τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1−τ1)η(d1,c1)))⊇[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))], |
implies
1(e12−1)Ω(c1+12η(d1,c1))⊇[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]. |
By multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1, we get
(IR)∫10τm−111(e12−1)Ω(c1+12η(d1,c1))dτ1⊇(IR)∫10τm−11[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]dτ1, |
(IR)∫10τm−111(e12−1)Ω(c1+12η(d1,c1))dτ1=[(R)∫10τm−111(e12−1)Ω↔(c1+12η(d1,c1))dτ1,(R)∫10τm−111(e12−1)↔Ω(c1+12η(d1,c1))dτ1], |
(IR)∫10τm−111(e12−1)Ω(c1+12η(d1,c1))dτ1=[1m(e12−1)Ω↔(c1+12η(d1,c1)),1m(e12−1)↔Ω(c1+12η(d1,c1))]=1m(e12−1)Ω(c1+12η(d1,c1)), | (3.3) |
(IR)∫10τm−11Ω(c1+(τ1)η(d1,c1))=[1ηm(d1,c1)(R)∫c1+(τ1)η(d1,c1)c(i−c)m−1Ω↔(i)di,1ηm(d1,c1)(R)∫c1+(τ1)η(d1,c1)c(i−c)m−1↔Ω(i)di], |
(IR)∫10τm−11Ω(c1+(τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω↔(c1),Im(c1+η(d1,c1))−↔Ω(c1)]=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))−Ω(c1). | (3.4) |
Similarly
(IR)∫10τm−11Ω(c1+(1−τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Imc+1Ω↔(c1+η(d1,c1)),Imc+1↔Ω(c1+η(d1,c1))]=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)). | (3.5) |
From (3.3)–(3.5), we get
1m(e12−1)Ω(c1+12η(d1,c1))⊇Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]. | (3.6) |
Now, from the interval valued exponential type pre-invexity of Ω, we have
Ω(c1+τ1η(d1,c1))=Ω(c1+η(d1,c1)+(1−τ1)η(c1,c1+η(d1,c1)))⊇(eτ1−1)Ω(c1+η(d1,c1))+(e(1−τ1)−1)Ω(c1). | (3.7) |
Similarly
Ω(c1+(1−τ1)η(d1,c1))=Ω(c1+η(d1,c1)+(τ1)η(c1,c1+η(d1,c1)))⊇(e(1−τ1)−1)Ω(c1+η(d1,c1))+(eτ1−1)Ω(c1). | (3.8) |
Thus, by adding (3.7) and (3.8), we get
Ω(c1+τ1η(d1,c1))+Ω(c1+(1−τ1)η(d1,c1))⊇[eτ1+e(1−τ1)−2](Ω(c1+η(d1,c1))+Ω(c1)). |
By multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1, we get
(IR)∫10τm−11Ω(c1+τ1η(d1,c1))dτ1+(IR)∫10τm−11Ω(c1+(1−τ1)η(d1,c1))dτ1⊇(IR)∫10τm−11[eτ1+e(1−τ1)−2](Ω(c1+η(d1,c1))+Ω(c1))dτ1. |
Now, from (3.2) we get
(IR)∫10τm−11[eτ1+e(1−τ1)−2](Ω(c1+η(d1,c1))+Ω(c1))dτ1=[(R)∫10τm−11[eτ1+e(1−τ1)−2](Ω↔(c1+η(d1,c1))+Ω↔(c1))dτ1,(R)∫10τm−11[eτ1+e(1−τ1)−2](↔Ω(c1+η(d1,c1))+↔Ω(c1))dτ1]=[P(Ω↔(c1+η(d1,c1))+Ω↔(c1)),P(↔Ω(c1+η(d1,c1))+↔Ω(c1))]=P(Ω(c1+η(d1,c1))+Ω(c1)). | (3.9) |
Also from (3.4), (3.5) and (3.9), we get
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]⊇P(Ω(c1+η(d1,c1))+Ω(c1)). | (3.10) |
Combining (3.6) and (3.10), we get
1(e12−1)Ω(c1+12η(d1,c1))⊇Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]⊇mP(Ω(c1+η(d1,c1))+Ω(c1)). |
Corollary 3.1. If ↔Ω(v)=Ω↔(v), then (3.1) leads to the following fractional inequality for exponential type pre-invex function:
1(e12−1)Ω(c1+12η(d1,c1))≤Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1)+Imc+1Ω(c1+η(d1,c1))]≤mP(Ω(c1+η(d1,c1))+Ω(c1)). |
Theorem 3.2. Let Λ⊂ℜ be an open invex set with respect to η:Λ×Λ→ℜ and a1,b1∈Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)]→ℜ are exponential type pre-invex interval-valued functions such that Ω,Ω1∈L[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]⊇P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)), | (3.11) |
where
P1=e2Γ(m)−e2Γ(m,2)2m+2eΓ(m,1)+2Γ(m,−1)−2Γ(m)(−1)m+Γ(m)−Γ(m,−2)(−1)m⋅2m−2eΓ(m)+2m, | (3.12) |
P2=eΓ(m,1)+Γ(m,−1)(−1)m−Γ(m)(−1)m−eΓ(m)+em+1m, | (3.13) |
Υ1(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)], | (3.14) |
and
Υ2(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. | (3.15) |
Proof. Since ΩandΩ1 are exponential type pre-invex interval-valued functions, so we have
Ω(a1+τ1η(b1,a1))=Ω(a1+η(b1,a1)+(1−τ1)η(a1,a1+η(b1,a1)))⊇(eτ1−1)Ω(a1+η(b1,a1))+(e(1−τ1)−1)Ω(a1) |
and
Ω1(a1+τ1η(b1,a1))=Ω1(a1+η(b1,a1)+(1−τ1)η(a1,a1+η(b1,a1)))⊇(eτ1−1)Ω1(a1+η(b1,a1))+(e(1−τ1)−1)Ω1(a1). |
Since Ω,Ω1∈ℜ+Λ, so
Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))⊇(eτ1−1)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(e(1−τ1)−1)2Ω(a1).Ω1(a1)+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. | (3.16) |
Similarly, we have
Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))⊇(e(1−τ1)−1)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(eτ1−1)2Ω(a1).Ω1(a1)+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. | (3.17) |
Adding (3.16) and (3.17) yields
Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))⊇[(e(1−τ1)−1)2+(eτ1−1)2][Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]+2(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. |
From (3.14) and (3.15), we have
Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))⊇[(e(1−τ1)−1)2+(eτ1−1)2]Υ1(a1,a1+η(b1,a1))+2(eτ1−1)(e(1−τ1)−1)Υ2(a1,a1+η(b1,a1)). |
Multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1 gives
(IR)∫10τm−11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1+(IR)∫10τm−11Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))dτ1⊇(IR)∫10τm−11[(e(1−τ1)−1)2+(eτ1−1)2]Υ1(a1,a1+η(b1,a1))dτ1+2(IR)∫10τm−11(eτ1−1)(e(1−τ1)−1)Υ2(a1,a1+η(b1,a1))dτ1. |
So
(IR)∫10τm−11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))−Ω(c1).Ω1(c1) |
and
(IR)∫10τm−11Ω(a1+(1−τ1)η(b1,a1)).Ω1(a1+(1−τ1)η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1)). |
From (3.12) and (3.13), we get
(IR)∫10τm−11[(e(1−τ1)−1)2+(eτ1−1)2]Υ1(a1,a1+η(b1,a1))dτ1=P1Υ1(a1,a1+η(b1,a1)) |
and
(IR)∫10τm−11(eτ1−1)(e(1−τ1)−1)Υ2(a1,a1+η(b1,a1))dτ1=P2Υ2(a1,a1+η(b1,a1)). |
Thus,
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]⊇P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)). |
Corollary 3.2. If ↔Ω(v)=Ω↔(v), then (3.11) leads to the following fractional inequality for exponential type pre-invex function:
Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]≤P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)). |
Theorem 3.3. Let Λ⊂ℜ be an open invex set with respect to η:Λ×Λ→ℜ and a1,b1∈Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)]→ℜ are exponential type pre-invex interval-valued functions such that Ω,Ω1∈L[a1,a1+η(b1,a1)] and m>0, then from (3.12)–(3.15), we have (considering Lemma 2.2 holds)
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)]]. | (3.18) |
Proof. Since Ω is an exponential type pre-invex interval-valued function, so we have
Ω(a1+12η(b1,a1))⊇(e12−1)[Ω(a1)+Ω(b1)]. |
Taking a1=c1+(1−τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives
Ω(c1+(1−τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1−τ1)η(d1,c1)))⊇(e12−1)[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))], |
implies
Ω(c1+12η(d1,c1))⊇(e12−1)[Ω(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]. | (3.19) |
Similarly
Ω1(c1+12η(d1,c1))⊇(e12−1)[Ω1(c1+(1−τ1)η(d1,c1))+Ω1(c1+(τ1)η(d1,c1))]. | (3.20) |
Multiplying (3.19) and (3.20) gives
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))+Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))]. | (3.21) |
Since Ω,Ω1∈ℜ+Λ, are exponential type pre-invex interval-valued functions for τ1∈[0,1], so we have
Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))⊇(e(1−τ1)−1)2Ω(a1+η(b1,a1)).Ω1(a1)+(eτ1−1)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. | (3.22) |
Similarly
Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))⊇(eτ1−1)2Ω(a1+η(b1,a1)).Ω1(a1)+(e(1−τ1)−1)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. | (3.23) |
Adding (3.22) and (3.23) yields
Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))⊇[(eτ1−1)2+(e(1−τ1)−1)2](Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1)))+2(eτ1−1)(e(1−τ1)−1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. |
Now from (3.21), we can write
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[[(eτ1−1)2+(e(1−τ1)−1)2]Υ2(a1,a1+η(b1,a1))+2(eτ1−1)(e(1−τ1)−1)Υ1(a1,a1+η(b1,a1))+Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))]. |
Multiplying by τm−11 on both sides and integrating over [0,1] with respect to τ1 yields
(IR)∫10τm−11Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))dτ1⊇(e12−1)2[(IR)∫10τm−11[(eτ1−1)2+(e(1−τ1)−1)2]Υ2(a1,a1+η(b1,a1))dτ1+2(IR)∫10τm−11(eτ1−1)(e(1−τ1)−1)Υ1(a1,a1+η(b1,a1))dτ1+(IR)∫10τm−11Ω(c1+(1−τ1)η(d1,c1)).Ω1(c1+(1−τ1)η(d1,c1))dτ1+(IR)∫10τm−11Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))dτ1]. |
Thus from (3.12)–(3.15), we get
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))⊇(e12−1)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)]]. |
Corollary 3.3. If ↔Ω(v)=Ω↔(v), then (3.18) leads to the following fractional inequality for exponential type pre-invex function:
Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))≤(e12−1)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))−Ω(c1).Ω1(c1)]]. |
In this section, we establish Hermite-hadamard type inequality in the setting of the He's fractional derivatives introduced in [18].
Definition 4.1. Let Ω be an L1 function defined on an interval [0,n1]. Then the k1-th He's fractional derivative of Ω(n1) is defined by
Ik1n1Ω(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1Ω(τ1)dτ1. |
The interval He's fractional derivative based on left and right end point functions can be defined by
Ik1n1Ω(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1Ω(τ1)dτ1=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1[Ω↔(τ1),↔Ω(τ1)]dτ1,n>n1, |
where
Ik1n1Ω↔(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1Ω↔(τ1)dτ1,n>n1 | (4.1) |
and
Ik1n1↔Ω(n1)=1Γ(i−k1)didni1∫n10(τ1−n)i−k1−1↔Ω(τ1)dτ1,n>n1. | (4.2) |
Theorem 4.1. Let Ω:[n1,n2]→ℜ be an exponential type pre-invex interval-valued function defined on [n1,n2]⊂Λ, where Λ is an open invex set with respect to η:Λ×Λ→ℜ and Ω:[n1,n2]⊂ℜ→ℜ+c is given by Ω(n)=[Ω↔(n),↔Ω(n)] for all n∈[n1,n2]. If Ω∈L1([n1,n2],ℜ), then
(−1)i−k1−1Ω(n12)⊇(e12−1)nk1ni−k12[(−1)i−k1−1Ik1(1−n)bΩ((1−n)b)+Ik1nbΩ(nb)]. | (4.3) |
Proof. Let Ω:[n1,n2]→ℜ be an exponential type pre-invex interval-valued function defined on [n1,n2], then
Ω(n1+12η(n2,n1))⊇(e12−1)[Ω(n2+τ1η(n1,n2))+Ω(n1+τ1η(n2,n1))] |
and
Ω↔(n1+12η(n2,n1))≤(e12−1)[Ω↔(n2+τ1η(n1,n2))+Ω↔(n1+τ1η(n2,n1))]. |
Taking n2=0,0≤n1 and multiplying by (τ1−n)i−k1−1Γ(i−k1), we get
(τ1−n)i−k1−1Γ(i−k1)Ω↔(n12)≤(e12−1)(τ1−n)i−k1−1Γ(i−k1)[Ω↔((1−τ1)n1)+Ω↔(τ1n1)]. |
Integrating with respect to τ1 over [0,n1] gives
Ω↔(n12)1Γ(i−k1)∫n10(τ1−n)i−k1−1dτ1≤(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔((1−τ1)n1)dτ1+(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔(τ1n1)dτ1, |
implies
Ω↔(n12)(−1)i−k1−1ni−k1Γ(i−k1)≤(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔((1−τ1)n1)dτ1+(e12−1)Γ(i−k1)∫n10(τ1−n)i−k1−1Ω↔(τ1n1)dτ1. |
Getting i-th derivative on both sides and using (4.1), we get
(−1)i−k1−1Ω↔(n12)≤(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)bΩ↔((1−n)b)+Ik1nbΩ↔(nb)]. |
Similarly
(−1)i−k1−1↔Ω(n12)≤(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)b↔Ω((1−n)b)+Ik1nb↔Ω(nb)]. |
Thus, we can write
(−1)i−k1−1[Ω↔(n12),↔Ω(n12)]⊇(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)b[Ω↔((1−n)b),↔Ω((1−n)b)]+Ik1nb[Ω↔(nb),↔Ω(nb)]]. |
So,
(−1)i−k1−1Ω(n12)⊇(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)bΩ((1−n)b)+Ik1nbΩ(nb)]. |
Corollary 4.1. If ↔Ω(v)=Ω↔(v), then (4.3) leads to the following fractional inequality for exponential type pre-invex function:
(−1)i−k1−1Ω(n12)≤(e12−1)nk1ni−k11[(−1)i−k1−1Ik1(1−n)bΩ((1−n)b)+Ik1nbΩ(nb)]. |
In this paper we studied the interval-valued exponential type pre-invex functions. We established He's and Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions in the setting of Riemann-Liouville interval-valued fractional operator.
This work was sponsored in part by Henan Science and Technology Project of China (No:182102110292).
The author declares no conflict of interest.
[1] |
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4
![]() |
[2] | S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475–488. |
[3] |
S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
![]() |
[4] |
E. Ameer, H. Aydi, M. Arshad, H. Alsamir, M. S. Noorani, Hybrid multivalued type contraction mappings in αK-complete partial b−metric Spaces and applications, Symmetry, 11 (2019), 86. https://doi.org/10.3390/sym11010086 doi: 10.3390/sym11010086
![]() |
[5] |
H. Aydi, M. Abbas, C. Vetro, Partial hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
![]() |
[6] |
H. A. Hammad, H. Aydi, M. D. la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853
![]() |
[7] |
P. Dhawan, K. Jain, J. Kaur, αH-ψH-multivaljed contractive mapping and related results in complete metric space with an applications, Mathematics, 7 (2019), 68. https://doi.org/10.3390/math7010068 doi: 10.3390/math7010068
![]() |
[8] |
H. A. Hammad, M. De la Sen, Application to Lipschitzian and integral systems via a quadruple coincidence point in fuzzy metric spaces, Mathematics, 10 (2022), 1905. https://doi.org/10.3390/math10111905 doi: 10.3390/math10111905
![]() |
[9] |
M. Asadi, M. Azhini, E. Karapinar, H. Monfared, Simulation functions over M−metric Spaces, East Asian Math. J., 33 (2017), 559–570. https://doi.org/10.7858/eamj.2017.039 doi: 10.7858/eamj.2017.039
![]() |
[10] |
M. Mudhesh, H. A. Hammad, E. Ameer, M. Arshad, F. Jarad, Novel results on fixed-point methodologies for hybrid contraction mappings in Mb−metric spaces with an application, AIMS Math., 8 (2023), 1530–1549. https://doi.org/10.3934/math.2023077 doi: 10.3934/math.2023077
![]() |
[11] | H. Monfared, M. Azhini, M. Asadi, Fixed point results on M−metric spaces, J. Math. Anal., 7 (2016), 85–101. |
[12] |
P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in M−metric spaces and an application, Mathematics, 7 (2019), 373. https://doi.org/10.3390/math7040373 doi: 10.3390/math7040373
![]() |
[13] |
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
![]() |
[14] |
R. Batra, S. Vashistha, Fixed points of an F−contraction on metric spaces with a graph, Int. J. Comput. Math., 91 (2014), 1–8. https://doi.org/10.1080/00207160.2014.887700 doi: 10.1080/00207160.2014.887700
![]() |
[15] | R. Batra, S. Vashistha, R. Kumar, A coincidence point theorem for F−contractions on metric spaces equipped with an altered distance, J. Math. Comput. Sci., 4 (2014), 826–833. |
[16] |
H. A. Hammad, P. Agarwal, L. G. J. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2021), 2012. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012
![]() |
[17] |
H. A. Hammad, H. Aydi, M. D. la Sen, Analytical solution for differential and nonlinear integral equations via Fϖe−Suzuki contractions in modified ϖe-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6128586. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586
![]() |
[18] |
N. Hussain, G. Ali, I. Iqbal, B. Samet, The existence of solutions to nonlinear matrix equations via fixed points of multivalued F−contractions, Mathematics, 8 (2020), 212. https://doi.org/10.3390/math8020212 doi: 10.3390/math8020212
![]() |
[19] |
X. Duan, A. Liao, B. Tang, On the nonlinear matrix equation X−m∑i=1A∗iXδiAi=Q, Linear Algebra Appl., 429 (2008), 110–121. https://doi.org/10.1016/j.laa.2008.02.014 doi: 10.1016/j.laa.2008.02.014
![]() |
[20] | T. Ando, Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim., 21 (1980), 579–589. |
[21] |
W. N. Anderson, T. D. Morley, G. E. Trapp, Ladder networks, fixed points and the geometric mean, Circ. Syst. Signal Pr., 3 (1983), 259–268. https://doi.org/10.1007/BF01599069 doi: 10.1007/BF01599069
![]() |
[22] |
J. C. Engwerda, On the existence of a positive solution of the matrix equation X+ATX−1A=I, Linear Algebra Appl., 194 (1993), 91–108. https://doi.org/10.1016/0024-3795(93)90115-5 doi: 10.1016/0024-3795(93)90115-5
![]() |
[23] |
W. Pusz, S. L. Woronowitz, Functional calculus for sequilinear forms and the purification map, Rep. Math. Phys., 8 (1975), 159–170. https://doi.org/10.1016/0034-4877(75)90061-0 doi: 10.1016/0034-4877(75)90061-0
![]() |
[24] |
B. L. Buzbee, G. H. Golub, C. W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Numer. Anal., 7 (1970), 627–656. https://doi.org/10.1137/0707049 doi: 10.1137/0707049
![]() |
[25] |
W. L. Green, E. Kamen, Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim., 23 (1985), 1–18. https://doi.org/10.1137/0323001 doi: 10.1137/0323001
![]() |
[26] |
H. Zhang, H. Yin, Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester-conjugate matrix equations, Appl. Math. Comput., 334 (2018), 174–191. https://doi.org/10.1016/j.camwa.2017.03.018 doi: 10.1016/j.camwa.2017.03.018
![]() |
[27] |
H. Zhang, Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications, Com. Math. Appl., 70 (2015), 2049–2062. https://doi.org/10.1016/j.camwa.2015.08.013 doi: 10.1016/j.camwa.2015.08.013
![]() |
[28] |
F. Ding, H. Zhang, Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems, IET Control Theory Appl., 8 (2014), 1588–1595. https://doi.org/10.1049/iet-cta.2013.1044 doi: 10.1049/iet-cta.2013.1044
![]() |
[29] |
H. Zhang, Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations, Comp. Math. Appl., 77 (2019), 1233–1244. https://doi.org/10.1016/j.camwa.2018.11.006 doi: 10.1016/j.camwa.2018.11.006
![]() |
[30] |
H. Zhang, L. Wan, Zeroing neural network methods for solving the Yang-Baxter-like matrix equation, Neurocomputing, 383 (2020), 409–418. https://doi.org/10.1016/j.neucom.2019.11.101 doi: 10.1016/j.neucom.2019.11.101
![]() |
[31] |
H. A. Hammad, M. Elmursi, R. A. Rashwan, H. Işik, Applying fixed point methodologies to solve a class of matrix difference equations for a new class of operators, Adv. Contin. Discrete Models, 2022 (2022), 1–16. https://doi.org/10.1186/s13662-022-03724-6 doi: 10.1186/s13662-022-03724-6
![]() |
[32] |
H. A. Hammad, A. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Func. Spaces, 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774
![]() |
[33] |
R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued g−metric spaces, Inf. Sci. Lett., 8 (2019), 111–119. http://dx.doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305
![]() |
[34] | I. Altun, G. Minak, H. Dag, Multivalued F−contractions on complete metric space, J. Nonlinear Convex Anal., 16 (2015), 659–666. |
[35] |
H. Kumar, N. Nashine, R. Pant, R. George, Common positive solution of two nonlinear matrix equations using fixed point results, Mathematics, 9 (2021), 2199. https://doi.org/10.3390/math9182199 doi: 10.3390/math9182199
![]() |
1. | Kin Keung Lai, Jaya Bisht, Nidhi Sharma, Shashi Kant Mishra, Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions, 2022, 10, 2227-7390, 264, 10.3390/math10020264 | |
2. | Yeliang Xiao, Ahsan Fareed Shah, Tariq Javed Zia, Ebenezer Bonyah, Muhammad Gulzar, Positive Weighted Symmetry Function Kernels and Some Related Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9372629 | |
3. | Lei Geng, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Rahat Bano, Yusuf Gurefe, Fractional Version of Hermite-Hadamard and Fejér Type Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/2935740 | |
4. | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, 2022, 7, 2473-6988, 15041, 10.3934/math.2022824 | |
5. | Yeliang Xiao, Muhammad Shoaib Saleem, Faiza Batool, Xiaolong Qin, Some Fractional Integral Inequalities for a Generalized Class of Nonconvex Functions, 2022, 2022, 2314-4785, 1, 10.1155/2022/3476461 | |
6. | Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri, Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory, 2024, 8, 2504-3110, 408, 10.3390/fractalfract8070408 | |
7. | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Some well known inequalities on two dimensional convex mappings by means of Pseudo L−R interval order relations via fractional integral operators having non-singular kernel, 2024, 9, 2473-6988, 16061, 10.3934/math.2024778 | |
8. | Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, 2024, 21, 1551-0018, 3422, 10.3934/mbe.2024151 | |
9. | Hanan Alohali, Valer-Daniel Breaz, Omar Mutab Alsalami, Luminita-Ioana Cotirla, Ahmed Alamer, Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane, 2024, 13, 2075-1680, 684, 10.3390/axioms13100684 | |
10. | Abdullah Ali H. Ahmadini, Waqar Afzal, Mujahid Abbas, Elkhateeb S. Aly, Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems, 2024, 12, 2227-7390, 382, 10.3390/math12030382 | |
11. | Maryam Gharamah Ali Alshehri, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Yoshihiro Sawano, Some New Improvements for Fractional Hermite–Hadamard Inequalities by Jensen–Mercer Inequalities, 2024, 2024, 2314-8896, 10.1155/2024/6691058 | |
12. | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Kwara Nantomah, Ding-Xuan Zhou, Some Novel Inequalities for Godunova–Levin Preinvex Functions via Interval Set Inclusion (⊆) Relation, 2025, 2025, 2314-4629, 10.1155/jom/5570638 |