In this manuscript, the concept of rational-type multivalued $ F- $contraction mappings is investigated. In addition, some nice fixed point results are obtained using this concept in the setting of $ MM- $spaces and ordered $ MM- $spaces. Our findings extend, unify, and generalize a large body of work along the same lines. Moreover, to support and strengthen our results, non-trivial and extensive examples are presented. Ultimately, the theoretical results are involved in obtaining a positive, definite solution to nonlinear matrix equations as an application.
Citation: Muhammad Tariq, Eskandar Ameer, Amjad Ali, Hasanen A. Hammad, Fahd Jarad. Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations[J]. AIMS Mathematics, 2023, 8(2): 3842-3859. doi: 10.3934/math.2023191
In this manuscript, the concept of rational-type multivalued $ F- $contraction mappings is investigated. In addition, some nice fixed point results are obtained using this concept in the setting of $ MM- $spaces and ordered $ MM- $spaces. Our findings extend, unify, and generalize a large body of work along the same lines. Moreover, to support and strengthen our results, non-trivial and extensive examples are presented. Ultimately, the theoretical results are involved in obtaining a positive, definite solution to nonlinear matrix equations as an application.
[1] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4 |
[2] | S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475–488. |
[3] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[4] | E. Ameer, H. Aydi, M. Arshad, H. Alsamir, M. S. Noorani, Hybrid multivalued type contraction mappings in $\alpha_K$-complete partial $b-$metric Spaces and applications, Symmetry, 11 (2019), 86. https://doi.org/10.3390/sym11010086 doi: 10.3390/sym11010086 |
[5] | H. Aydi, M. Abbas, C. Vetro, Partial hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012 |
[6] | H. A. Hammad, H. Aydi, M. D. la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[7] | P. Dhawan, K. Jain, J. Kaur, $\alpha_{H}$-$\psi _{H}$-multivaljed contractive mapping and related results in complete metric space with an applications, Mathematics, 7 (2019), 68. https://doi.org/10.3390/math7010068 doi: 10.3390/math7010068 |
[8] | H. A. Hammad, M. De la Sen, Application to Lipschitzian and integral systems via a quadruple coincidence point in fuzzy metric spaces, Mathematics, 10 (2022), 1905. https://doi.org/10.3390/math10111905 doi: 10.3390/math10111905 |
[9] | M. Asadi, M. Azhini, E. Karapinar, H. Monfared, Simulation functions over $M-$metric Spaces, East Asian Math. J., 33 (2017), 559–570. https://doi.org/10.7858/eamj.2017.039 doi: 10.7858/eamj.2017.039 |
[10] | M. Mudhesh, H. A. Hammad, E. Ameer, M. Arshad, F. Jarad, Novel results on fixed-point methodologies for hybrid contraction mappings in $M_{b}-$metric spaces with an application, AIMS Math., 8 (2023), 1530–1549. https://doi.org/10.3934/math.2023077 doi: 10.3934/math.2023077 |
[11] | H. Monfared, M. Azhini, M. Asadi, Fixed point results on $M-$metric spaces, J. Math. Anal., 7 (2016), 85–101. |
[12] | P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in $M-$metric spaces and an application, Mathematics, 7 (2019), 373. https://doi.org/10.3390/math7040373 doi: 10.3390/math7040373 |
[13] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[14] | R. Batra, S. Vashistha, Fixed points of an $F-$contraction on metric spaces with a graph, Int. J. Comput. Math., 91 (2014), 1–8. https://doi.org/10.1080/00207160.2014.887700 doi: 10.1080/00207160.2014.887700 |
[15] | R. Batra, S. Vashistha, R. Kumar, A coincidence point theorem for $F-$contractions on metric spaces equipped with an altered distance, J. Math. Comput. Sci., 4 (2014), 826–833. |
[16] | H. A. Hammad, P. Agarwal, L. G. J. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2021), 2012. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012 |
[17] | H. A. Hammad, H. Aydi, M. D. la Sen, Analytical solution for differential and nonlinear integral equations via $F_{\varpi _{e}}-$Suzuki contractions in modified $\varpi _{e}$-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6128586. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586 |
[18] | N. Hussain, G. Ali, I. Iqbal, B. Samet, The existence of solutions to nonlinear matrix equations via fixed points of multivalued $F-$contractions, Mathematics, 8 (2020), 212. https://doi.org/10.3390/math8020212 doi: 10.3390/math8020212 |
[19] | X. Duan, A. Liao, B. Tang, On the nonlinear matrix equation $X-\sum\limits_{i = 1}^{m}A_{i}^{*}X^{\delta_{i}}A_{i} = Q$, Linear Algebra Appl., 429 (2008), 110–121. https://doi.org/10.1016/j.laa.2008.02.014 doi: 10.1016/j.laa.2008.02.014 |
[20] | T. Ando, Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim., 21 (1980), 579–589. |
[21] | W. N. Anderson, T. D. Morley, G. E. Trapp, Ladder networks, fixed points and the geometric mean, Circ. Syst. Signal Pr., 3 (1983), 259–268. https://doi.org/10.1007/BF01599069 doi: 10.1007/BF01599069 |
[22] | J. C. Engwerda, On the existence of a positive solution of the matrix equation $\mathcal{X}+A^{\mathcal{T}}\mathcal{X}^{-1}A = I$, Linear Algebra Appl., 194 (1993), 91–108. https://doi.org/10.1016/0024-3795(93)90115-5 doi: 10.1016/0024-3795(93)90115-5 |
[23] | W. Pusz, S. L. Woronowitz, Functional calculus for sequilinear forms and the purification map, Rep. Math. Phys., 8 (1975), 159–170. https://doi.org/10.1016/0034-4877(75)90061-0 doi: 10.1016/0034-4877(75)90061-0 |
[24] | B. L. Buzbee, G. H. Golub, C. W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Numer. Anal., 7 (1970), 627–656. https://doi.org/10.1137/0707049 doi: 10.1137/0707049 |
[25] | W. L. Green, E. Kamen, Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim., 23 (1985), 1–18. https://doi.org/10.1137/0323001 doi: 10.1137/0323001 |
[26] | H. Zhang, H. Yin, Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester-conjugate matrix equations, Appl. Math. Comput., 334 (2018), 174–191. https://doi.org/10.1016/j.camwa.2017.03.018 doi: 10.1016/j.camwa.2017.03.018 |
[27] | H. Zhang, Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications, Com. Math. Appl., 70 (2015), 2049–2062. https://doi.org/10.1016/j.camwa.2015.08.013 doi: 10.1016/j.camwa.2015.08.013 |
[28] | F. Ding, H. Zhang, Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems, IET Control Theory Appl., 8 (2014), 1588–1595. https://doi.org/10.1049/iet-cta.2013.1044 doi: 10.1049/iet-cta.2013.1044 |
[29] | H. Zhang, Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations, Comp. Math. Appl., 77 (2019), 1233–1244. https://doi.org/10.1016/j.camwa.2018.11.006 doi: 10.1016/j.camwa.2018.11.006 |
[30] | H. Zhang, L. Wan, Zeroing neural network methods for solving the Yang-Baxter-like matrix equation, Neurocomputing, 383 (2020), 409–418. https://doi.org/10.1016/j.neucom.2019.11.101 doi: 10.1016/j.neucom.2019.11.101 |
[31] | H. A. Hammad, M. Elmursi, R. A. Rashwan, H. Işik, Applying fixed point methodologies to solve a class of matrix difference equations for a new class of operators, Adv. Contin. Discrete Models, 2022 (2022), 1–16. https://doi.org/10.1186/s13662-022-03724-6 doi: 10.1186/s13662-022-03724-6 |
[32] | H. A. Hammad, A. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Func. Spaces, 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774 |
[33] | R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued $g-$metric spaces, Inf. Sci. Lett., 8 (2019), 111–119. http://dx.doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305 |
[34] | I. Altun, G. Minak, H. Dag, Multivalued $F-$contractions on complete metric space, J. Nonlinear Convex Anal., 16 (2015), 659–666. |
[35] | H. Kumar, N. Nashine, R. Pant, R. George, Common positive solution of two nonlinear matrix equations using fixed point results, Mathematics, 9 (2021), 2199. https://doi.org/10.3390/math9182199 doi: 10.3390/math9182199 |