In previous papers, several $ T_{0} $, $ T_{2} $ objects, $ D $-connectedness and zero-dimensionality in topological categories have been introduced and compared. In this paper, we characterize separated objects, $ T_{0} $, $ {\bf{T_{0}}} $, $ T_{1} $, Pre-$ T_{2} $ and several versions of Hausdorff objects in the category of interval spaces and interval-preserving mappings and examine their mutual relationship. Further, we give the characterization of the notion of closedness and $ D $-connectedness in interval spaces and study some of their properties. Finally, we introduce zero-dimensionality in this category and show its relation to $ D $-connectedness.
Citation: Muhammad Qasim, Arbaz Jehan Khan, Samirah Alsulami, Shoaib Assar. Some topological aspects of interval spaces[J]. AIMS Mathematics, 2023, 8(2): 3826-3841. doi: 10.3934/math.2023190
In previous papers, several $ T_{0} $, $ T_{2} $ objects, $ D $-connectedness and zero-dimensionality in topological categories have been introduced and compared. In this paper, we characterize separated objects, $ T_{0} $, $ {\bf{T_{0}}} $, $ T_{1} $, Pre-$ T_{2} $ and several versions of Hausdorff objects in the category of interval spaces and interval-preserving mappings and examine their mutual relationship. Further, we give the characterization of the notion of closedness and $ D $-connectedness in interval spaces and study some of their properties. Finally, we introduce zero-dimensionality in this category and show its relation to $ D $-connectedness.
[1] | J. Adámek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, New York: John Wiley & Sons, 1990. |
[2] | M. Baran, Separation properties, Indian J. Pure Appl. Math., 23 (1991), 333–341. |
[3] | M. Baran, The notion of closedness in topological categories, Comment. Math. Univ. Carolin., 34 (1993), 383–395. |
[4] | M. Baran, H. Altındiş, $T_{0}$ objects in topological categories, J. Univ. Kuwait (Sci.), 22 (1995), 123–127. |
[5] | M. Baran, H. Altındiş, $T_{2}$ objects in topological categories, Acta Math. Hungarica, 71 (1996), 41–48. https://doi.org/10.1007/BF00052193 doi: 10.1007/BF00052193 |
[6] | M. Baran, Separation properties in topological categories, Math. Balkanica, 10 (1996), 39–48. |
[7] | M. Baran, Completely regular objects and normal objects in topological categories, Acta Mathematica Hungarica, 80 (1998), 211–224. https://doi.org/10.1023/A:1006550726143 doi: 10.1023/A:1006550726143 |
[8] | M. Baran, M. Kula, A note on connectedness, Publ. Math. Debrecen, 68 (2006), 489–501. https://doi.org/10.5486/PMD.2006.3343 doi: 10.5486/PMD.2006.3343 |
[9] | M. Baran, Pre $T_{2}$-objects in topological categories, Appl. Categor. Struct., 17 (2009), 591–602. https://doi.org/10.1007/s10485-008-9161-4 doi: 10.1007/s10485-008-9161-4 |
[10] | M. Baran, J. Al-Safar, Quotient-reflective and bireflective subcategories of the category of preordered sets, Topol. Appl., 158 (2011), 2076–2084. https://doi.org/10.1016/j.topol.2011.06.043 doi: 10.1016/j.topol.2011.06.043 |
[11] | M. Baran, H. Abughalwa, Sober spaces, Turkish J. Math., 46 (2022), 299–310. https://doi.org/10.3906/mat-2109-95 doi: 10.3906/mat-2109-95 |
[12] | T. M. Baran, M. Kula, Local pre-Hausdorff extended pseudo-quasi-semi metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 862–870. https://doi.org/10.31801/cfsuasmas.484924 doi: 10.31801/cfsuasmas.484924 |
[13] | T. M. Baran, Closedness, separation and connectedness in pseudo-quasi-semi metric spaces, Filomat, 34 (2020), 4757–4766. https://doi.org/10.2298/FIL2014757B doi: 10.2298/FIL2014757B |
[14] | T. M. Baran, A. Erciyes, $T_{4}$, Urysohn's lemma and Tietze extension theorem for constant filter convergence spaces, Turkish J. Math., 45 (2021), 843–855. https://doi.org/10.3906/mat-2012-101 doi: 10.3906/mat-2012-101 |
[15] | T. M. Baran, M. Kula, Separation axioms, Urysohn's Lemma and Tietze Extention Theorem for extended pseudo-quasi-semi metric spaces, Filomat, 36 (2022), 703–713. https://doi.org/10.2298/FIL2202703B doi: 10.2298/FIL2202703B |
[16] | N. Bourbaki, General topology, Hermann: Addison-Wesley Publishing Company, 1966. |
[17] | J. Calder, Some elementary properties of interval convexities, J. London Math. Soc., 2 (1971), 422–428. https://doi.org/10.1112/jlms/s2-3.3.422 doi: 10.1112/jlms/s2-3.3.422 |
[18] | M. M. Clementino, W. Tholen, Separation versus connectedness, Topol. Appl., 75 (1997), 143–181. https://doi.org/10.1016/S0166-8641(96)00087-9 doi: 10.1016/S0166-8641(96)00087-9 |
[19] | D. Deses, On the representation of non-Archimedean objects, Topol. Appl., 153 (2005), 774–785. https://doi.org/10.1016/j.topol.2005.01.010 doi: 10.1016/j.topol.2005.01.010 |
[20] | W. Hurewicz, H. Wallman, Dimension theory, Princeton: Princeton University Press, 2015. |
[21] | P. T. Johnstone, Stone spaces, New York: L. M. S. Mathematics Monograph: No. 10. Academic Press, 1977. |
[22] | S. Khadim, M. Qasim, Quotient reflective subcategories of the category of bounded uniform filter spaces, AIMS Math., 7 (2022), 16632–16648. https://doi.org/10.3934/math.2022911 doi: 10.3934/math.2022911 |
[23] | M. Kula, T. Maraşlı, S. Özkan, A note on closedness and connectedness in the category of proximity spaces, Filomat, 28 (2014), 1483–1492. https://doi.org/ 10.2298/FIL1407483K doi: 10.2298/FIL1407483K |
[24] | M. Kula, S. Özkan, T. Maraşlı, Pre-Hausdorff and Hausdorff proximity spaces, Filomat, 31 (2014), 3837–3846. https://doi.org/10.2298/FIL1712837K doi: 10.2298/FIL1712837K |
[25] | M. Kula, S. Özkan, $T_{2}$ and $T_{3}$ at $p$ in the category of proximity spaces, Math. Bohem., 145 (2020), 177–190. https://doi.org/10.21136/MB.2019.0144-17 doi: 10.21136/MB.2019.0144-17 |
[26] | H. Lai, W. Tholen, A note on the topologicity of quantale-valued topological spaces, Log. Meth. Comput. Sci., 13 (2017), 1–13. https://doi.org/10.23638/LMCS-13(3:12)2017 doi: 10.23638/LMCS-13(3:12)2017 |
[27] | D. Leseberg, Z. Vaziry, Bounded topology, Saarbrucken: Lap Lambert Academic Publishing, 2019. |
[28] | D. Leseberg, Z. Vaziry, The quasitopos of b-uniform filter spaces, Math. Appl., 7 (2018), 155–171. https://doi.org/10.13164/ma.2018.13 doi: 10.13164/ma.2018.13 |
[29] | T. Marny, Rechts-bikategoriestrukturen in topologischen kategorien, Ph.D thesis, Freie Universität Berlin, 1973. |
[30] | M. V. Mielke, Separation axioms and geometric realizations, Indian J. Pure Appl. Math., 25 (1994), 711–722. |
[31] | M. V. Mielke, Hausdorff separations and decidability, In: Symposium on categorical topology, Rondebosch: University of Cape Town, 1999. |
[32] | J. V. Mill, Supercompactness and wallman spaces, Amsterdam: Mathematic Centre Tracts, 1997. |
[33] | M. Qasim, B. Pang, Pre-Hausdorff and Hausdorff objects in the category of quantale-valued closure spaces, Hacet. J. Math. Stat., 50 (2021), 612–623. https://doi.org/10.15672/hujms.740593 doi: 10.15672/hujms.740593 |
[34] | M. Qasim, M. A. Aslam, A note on quotient reflective subcategories of O-REL, J. Funct. Space., 2022, 1117881. https://doi.org/10.1155/2022/1117881 doi: 10.1155/2022/1117881 |
[35] | V. P. Soltan, D-convexity in graphs, Soviet Math. Dokl., 28 (1983), 419–421. |
[36] | J. Stine, Pre-Hausdorff objects in topological categories, Ph.D thesis, University of Miami, 1997. |
[37] | J. Stine, Initial hulls and zero dimensional objects, Publ. Math. Debrecen, 82 (2013), 359–371. https://doi.org/ 10.5486/PMD.2013.5307 doi: 10.5486/PMD.2013.5307 |
[38] | G. Preuss, Theory of topological structures: an approach to categorical topology, Berlin: Springer, 1988. |
[39] | M. J. L. Van De Vel, Binary convexities and distributive lattices, Proc. London Math. Soc., 48 (1984), 1–33. https://doi.org/ 10.1112/plms/s3-48.1.1 doi: 10.1112/plms/s3-48.1.1 |
[40] | M. J. L. Van De Vel, Theory of convex structures, Amsterdam: North Holland, 1993. |
[41] | B. Wang, Q. H. Li, Z. Y. Xiu, A categorical approach to abstract convex spaces and interval spaces, Open Math., 17 (2019), 374–384. https://doi.org/10.1515/math-2019-0029 doi: 10.1515/math-2019-0029 |
[42] | S. Weck-Schwarz, $T_{0}$-objects and separated objects in topological categories, Quaest. Math., 14 (1991), 315–325. https://doi.org/10.1080/16073606.1991.9631649 doi: 10.1080/16073606.1991.9631649 |