Research article Special Issues

Global gradient estimates in directional homogenization

  • Received: 11 July 2023 Revised: 18 September 2023 Accepted: 25 September 2023 Published: 07 October 2023
  • MSC : 35B27, 35J47, 35D30, 35B65

  • In this research, we investigate a higher regularity result in periodic directional homogenization for divergence-form elliptic systems with discontinuous coefficients in a bounded nonsmooth domain. The coefficients are assumed to have small bounded mean oscillation (BMO) seminorms and the domain has the $ \delta $-Reifenberg property. Under these assumptions we derive global uniform Calderón-Zygmund estimates by proving that the gradient of the weak solution is as integrable as the given nonhomogeneous term.

    Citation: Yunsoo Jang. Global gradient estimates in directional homogenization[J]. AIMS Mathematics, 2023, 8(11): 27643-27658. doi: 10.3934/math.20231414

    Related Papers:

  • In this research, we investigate a higher regularity result in periodic directional homogenization for divergence-form elliptic systems with discontinuous coefficients in a bounded nonsmooth domain. The coefficients are assumed to have small bounded mean oscillation (BMO) seminorms and the domain has the $ \delta $-Reifenberg property. Under these assumptions we derive global uniform Calderón-Zygmund estimates by proving that the gradient of the weak solution is as integrable as the given nonhomogeneous term.



    加载中


    [1] M. Avellaneda, F. Lin, Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., 40 (1987), 803–847. https://doi.org/10.1002/cpa.3160400607 doi: 10.1002/cpa.3160400607
    [2] A. Bensoussan, J. L. Lions, G. C. Papanicolaou, Asymptotic analysis for periodic structures, AMS Chelsea Publishing, 2011.
    [3] S. -S. Byun, Y. Jang, Global $W^{1, p}$ estimates for elliptic systems in homogenization problems in Reifenberg domains, Ann. Mat. Pura Appl., 195 (2016), 2061–2075. https://doi.org/10.1007/s10231-016-0553-z doi: 10.1007/s10231-016-0553-z
    [4] S. -S. Byun. Y. Jang, $W^{1, p}$ estimates in homogenization of elliptic systems with measurable coefficients, Math. Nachr., 290 (2017), 1249–1259. https://doi.org/10.1002/mana.201600055 doi: 10.1002/mana.201600055
    [5] S. -S. Byun, Y. Jang, Homogenization of the conormal derivative problem for elliptic systems in Reifenberg domains, Commun. Contemp. Math., 20 (2018), 1650062. https://doi.org/10.1142/S0219199716500620 doi: 10.1142/S0219199716500620
    [6] S. -S. Byun, S. Ryu, L. Wang, Gradient estimates for elliptic systems with measurable coefficients in nonsmooth domains, Manuscripta Math., 133 (2010), 225–245. https://doi.org/10.1007/s00229-010-0373-1 doi: 10.1007/s00229-010-0373-1
    [7] S. -S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., 57 (2004), 1283–1310. https://doi.org/10.1016/j.jfa.2007.04.021 https://doi.org/10.1002/cpa.20037
    [8] S. -S. Byun, L. Wang, Gradient estimates for elliptic systems in non-smooth domains, Math. Ann., 341 (2008), 629–650. https://doi.org/10.1007/s00208-008-0207-6 doi: 10.1007/s00208-008-0207-6
    [9] S. -S. Byun, L. Wang, Elliptic equations with measurable coefficients in Reifenberg domains, Adv. Math., 225 (2010), 2648–2673. https://doi.org/10.1016/j.aim.2010.05.014 doi: 10.1016/j.aim.2010.05.014
    [10] L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI, 43 (1995).
    [11] L. A. Caffarelli, I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., 51 (1998), 1–21.
    [12] M. Chipot, D. Kinderlehrer, G. Vergara-Caffarelli, Smoothness of linear laminates, Arch. Rational Mech. Anal., 96 (1986), 81–96. https://doi.org/10.1007/BF00251414 doi: 10.1007/BF00251414
    [13] L. Diening, P. Kaplický, $L^q$ theory for a generalized Stokes system, Manuscripta Math., 141 (2013), 333–361. https://doi.org/10.1007/s00229-012-0574-x doi: 10.1007/s00229-012-0574-x
    [14] H. Dong, D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal., 43 (2011), 1075–1098. https://doi.org/10.1137/100794614 doi: 10.1137/100794614
    [15] R. Dong, D. Li, Gradient estimates for directional homogenization of elliptic systems, J. Math. Anal. Appl., 503 (2021), 125312. https://doi.org/10.1016/j.jmaa.2021.125312 doi: 10.1016/j.jmaa.2021.125312
    [16] R. Dong, D. Li, L. Wang, Regularity of elliptic systems in divergence form with directional homogenization, Discrete Contin. Dyn. Syst., 38 (2018), 75–90. https://doi.org/10.3934/dcds.2018004 doi: 10.3934/dcds.2018004
    [17] J. Geng, Z. Shen, L. Song, Uniform $W^{1, p}$ estimates for systems of linear elasticity in a periodic medium, J. Funct. Anal., 262 (2012), 1742–1758. https://doi.org/10.1016/j.jfa.2011.11.023 doi: 10.1016/j.jfa.2011.11.023
    [18] Y. Jang, Uniform estimates with data from generalized Lebesgue spaces in periodic structures, Bound. Value Probl., 2021. https://doi.org/10.1186/s13661-021-01504-x
    [19] Y. Jang, Y. Kim, Gradient estimates for solutions of elliptic systems with measurable coefficients from composite material, Math. Method. Appl. Sci., 41 (2018), 7007–7031. https://doi.org/10.1002/mma.5213 doi: 10.1002/mma.5213
    [20] C. E. Kenig, F. Lin, Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901–937. https://doi.org/10.1090/S0894-0347-2013-00769-9 doi: 10.1090/S0894-0347-2013-00769-9
    [21] T. Kilpel$\ddot{\text{a}}$inen, P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., 23 (1994), 899–909.
    [22] N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Commun. Part. Diff. Eq., 32 (2007), 453–475. https://doi.org/10.1080/03605300600781626 doi: 10.1080/03605300600781626
    [23] Y. Li, L. Nirenberg, Estimates for elliptic systems from composite material, Commun. Pure Appl. Math., 56 (2003), 892–925. https://doi.org/10.1002/cpa.10079 doi: 10.1002/cpa.10079
    [24] V. Mácha, J. Tichý, Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions, J. Math. Fluid Mech., 16 (2014), 823–845. https://doi.org/10.1007/s00021-014-0190-5 doi: 10.1007/s00021-014-0190-5
    [25] V. G. Maz'ya, Sobolev spaces, With Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 342 (2nd revised and augmented ed.), Berlin-Heidelberg-New York, Springer Verlag, 2011.
    [26] E. Reifenberg, Solutions of the plateau problem for m-dimensional surfaces of varying topological type, Acta Math., 1960, 1–92.
    [27] Z. Shen, $W^{1, p}$ estimates for elliptic homogenization problems in nonsmooth domains, Indiana Univ. Math. J., 57 (2008), 2283–2298. https://doi.org/10.1512/iumj.2008.57.3344 doi: 10.1512/iumj.2008.57.3344
    [28] T. Toro, Doubling and flatness: Geometry of measures, Not. Amer. Math. Soc., 1997, 1087–1094.
    [29] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.), 19 (2003), 381–396.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(497) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog