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1. Introduction

In this study, we consider elliptic systems in directional homogenization of the following form: Dα

(
Aαβ,ε

i j (x)Dβu
j
ε(x)

)
= Dα f i

α(x) in Ω

ui
ε(x) = 0 on ∂Ω

(1.1)

for 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ m with m ≥ 1, where the nonhomogeneous term F = { f i
α} is given by

a matrix-valued function. Here, Ω is a bounded domain in Rn with n ≥ 2 and 0 < ε ≤ 1. Especially,
in order to treat directional homogenization we define the coefficients Aε = {Aαβ,ε

i j } for 0 < ε ≤ 1 from
A = {Aαβ

i j }, Aαβ
i j : Rn → R, to be as follows:

Aαβ
i j (x) = Aαβ,1

i j (x) and Aαβ,ε
i j (x′, x′′) = Aαβ

i j

(
x′,

x′′

ε

)
(1.2)
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where x = (x′, x′′), x′ = (x1, · · · , xl) ∈ Rl and x′′ = (xl+1, · · · , xn) ∈ Rn−l with 0 ≤ l ≤ n. In addition, we
assume the following periodicity condition on

{
Aαβ

i j (x)
}
:

Aαβ
i j (x′, x′′ + z′′) = Aαβ

i j (x′, x′′) ((x′, x′′) ∈ Rl × Rn−l, z′′ ∈ Zn−l). (1.3)

The coefficients are assumed to have uniform ellipticity and uniform boundedness. In other words, we
assume that there exist positive constants ν and L such that

ν|ξ|2 ≤ Aαβ
i j (x)ξi

αξ
j
β and ‖A‖L∞(Rn,Rmn×mn) ≤ L, (1.4)

for every matrix ξ ∈ Rmn and for almost every x ∈ Rn. We note that since if l = n, we do not need to
treat homogenization and if l = 0, our problem is periodic homogenization, throughout this research in
order to consider directional homogenzition we assume that 1 ≤ l ≤ n − 1.

In this paper, we consider the weak solution uε = (u1
ε , · · · , u

m
ε ) ∈ H1

0(Ω,Rm) to (1.1) which satisfies∫
Ω

Aαβ,ε
i j Dβu j

εDαφ
idx =

∫
Ω

f i
αDαφ

idx, ∀φ = (φ1, . . . , φm) ∈ H1
0(Ω,Rm). (1.5)

Here we note that if F ∈ L2(Ω,Rmn), the weak solution uε ∈ H1
0(Ω,Rm) exists and satisfies the estimate

‖Duε‖L2(Ω) ≤ c‖F‖L2(Ω), (1.6)

where the constant c does not depend on ε, by the Lax-Milgram lemma.
Now, we introduce some basic facts for directional homogenization; see for details in [2, 16]. The

matrix of correctors χ =
{
χ

i j
α (x′, x′′)

}
, with 1 ≤ i, j ≤ m and l + 1 ≤ α ≤ n, is the weak solution to the

following cell problem: 
−Dα

(
Aαβ

i j (x′, x′′)Dβχ
jk
γ (x′, x′′)

)
= DαAαγ

ik (x′, x′′)∫
[0,1]n−l χ

jk
γ (x′, x′′)dx′′ = 0

χ
jk
γ (x′, x′′) is Zn−l periodic,

(1.7)

which satisfies the following estimate :

‖Dx′′χ(x′, x′′)‖L2([0,1]n−l) ≤ c(ν, L,m, n, l). (1.8)

Let
Aαβ,0

i j (x′) =

∫
[0,1]n−l

(
Aαβ

i j (x′, x′′) + Aαγ
ik (x′, x′′)Dγχ

k j
β (x′, x′′)

)
dx′′. (1.9)

Then the linear elliptic system given by Dα

(
Aαβ,0

i j (x′)Dβu
j
0(x)

)
= Dα f i

α(x) in Ω

ui
0(x) = 0 on ∂Ω

(1.10)

is the homogenized problem of (1.1), whose weak solution u0 of (1.10) is the weak limit of the weak
solution uε in H1

0(Ω,Rm) as ε → 0.
Regularity theories for elliptic equations in homogenization are widely studied for partial

differential equations; see [1, 3–5, 11, 15–18, 20, 23, 27] and the references therein. Among these,
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under the settings, our goal is to obtain global uniform Calderón-Zygmund estimates, that is, we would
like to prove that if F ∈ Lp(Ω,Rmn), then the Lp norm of Duε is controlled by the Lp norm of F and
is independent of ε. The authors proved the Calderón-Zygmund theory for (1.1) under the condition
of periodic homogenization in [3]. Recently, the authors of [15, 16] gave several different interior
regularity results for directional homogenization. Given these viewpoints, here, we consider the global
estimates in directional homogenization.

For homogenization problems, we want to derive estimates which are independent of 0 < ε ≤

1. Since our desired result includes the case ε = 1 for (1.1) when there is no homogenization, our
research relies on the conditions that the Lp regularity theory for the gradient is established; see [6–9,
14, 22]. Thus, we prove the global Calderón-Zygmund theory for (1.1) subject to periodic directional
homogenization under the conditions of Definitions 2.2 and 2.3 described in Section 2. In fact, in view
of the condition for the coefficients of the regularity theory for (1.1) with ε = 1 in this literature, we
may consider some weaker assuptions than Definition 2.2 but in that case, we can only obtain some
local results instead of the global regularity; see Remark 2.8.

To prove our result, we use a perturbation argument based on localization which includes scaling,
translation and rotation. In fact, even though in (1.1) with (1.2) the direction of homogenization
is globally fixed so that the direction is changed under rotation, the condition of the coefficients
in Definition 2.2 below is invariant under rotation. This makes our method suitable for directional
homogenization. Also, for directional homogenization, when we solve our problem, there are
some differences between the x′-direction which is not involved with homogenization and the x′′-
direction for homogenization. The former gives macroscopic properties in the x′-direction and the
latter represents microscopic oscillation in the x′′-direction. With this observation, we can apply
estimates from the case without homogenization; see [6,7] for x′ and results corresponding to periodic
homogenization in [3] for x′′ in our proof; see details in Lemma 3.3.

This paper is organized as follows. In Section 2, we introduce some notations and definitions and
announce our result as Theorem 2.6. In Section 3, we show our key lemma, Lemma 3.3, and then
finally give the proof of the result.

2. Assumptions and main result

We start this section with some notations and definitions.

Notations 2.1. (1) An open ball in Rn with a center y with radius r > 0 is defined to be

Br(y) = {x ∈ Rn : |x − y| < r}.

If the center is the origin, we denote Br(0) by Br. Similarly, for y = (y′, y′′) ∈ Rl × Rn−l, an open
ball in Rl with the center y′ with radius r > 0 is defined to be

B′r(y
′) = {x′ ∈ Rl : |x′ − y′| < r},

an open ball in Rn−l with the center y′′ with radius r > 0 is defined to be

B′′r (y′′) = {x′′ ∈ Rn−l : |x′′ − y′′| < r},

and if the center is the origin, y = (0′, 0′′), then we denote B′r(0
′) ⊂ Rl by B′r and B′′r (0′′) ⊂ Rn−l

by B′′r .
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(2) The integral average of g ∈ L1(U) over the bounded domain U in Rn is denoted by

gU =

∫
−

U
g(x)dx =

1
|U |

∫
U

g(x)dx.

When U = U′ × U′′ ⊂ Rl × Rn−l, we denote the integral average over U′ ⊂ Rl by

gU′(x′′) =

∫
−

U′
g(x)dx′ =

1
|U′|

∫
U′

g(x)dx′

and we denote the integral average over U′′ ⊂ Rn−l by

gU′′(x′) =

∫
−

U′′
g(x)dx′′ =

1
|U′′|

∫
U′′

g(x)dx′′.

(3) B+
ρ = Bρ ∩ {xn > 0}, Tρ = Bρ ∩ {xn = 0}.

(4) Ωρ(y) = Bρ(y) ∩Ω, Ωρ = Ωρ(0), ∂wΩρ(y) = Bρ(y) ∩ ∂Ω, ∂wΩρ = ∂wΩρ(0).

For our global regularity result we assume that the coefficient A enjoys the small bounded mean
oscillation (BMO) condition which is a generalization of the vanishing mean oscillation (VMO)
condition. The following is the precise definition that is to be used throughout this paper.

Definition 2.2. We say that Aαβ
i j is (δ,R)-vanishing if

sup
0<r≤R

sup
y∈Rn

∫
−

Br(y)

∣∣∣∣∣Aαβ
i j (x) − Aαβ

i j Br(y)

∣∣∣∣∣2 dx ≤ δ2.

Additionally, we consider the domain Ω is a Reifenberg domain; see [26], which is an extension of
Lipschitz domains with small Lipschitz constants. The definition is as follows:

Definition 2.3. Let Ω be a bounded domain in Rn. We say that Ω is (δ,R)-Reifenberg flat if for every
x ∈ ∂Ω and every r ∈ (0,R], there exists a coordinate system {y1, . . . , yn} that is dependent on r and x
so that x = 0 in this coordinate system and

Br ∩ {yn > δr} ⊂ Br ∩Ω ⊂ Br ∩ {yn > −δr} . (2.1)

Similar to Definition 2.2, we can define Aαβ
i j as (δ,R)-vanishing with respect to x′ if

sup
0<r≤R

sup
(y′,y′′)∈Rl×Rn−l

∫
−

B′r(y′)×B′′r (y′′)

∣∣∣∣∣Aαβ
i j (x′, x′′) − Aαβ

i j B′r(y′)
(x′′)

∣∣∣∣∣2 dx ≤ δ2 (2.2)

and Aαβ
i j is (δ,R)-vanishing with respect to x′′ if

sup
0<r≤R

sup
(y′,y′′)∈Rl×Rn−l

∫
−

B′r(y′)×B′′r (y′′)

∣∣∣∣∣Aαβ
i j (x′, x′′) − Aαβ

i j B′′r (y′′)
(x′)

∣∣∣∣∣2 dx ≤ δ2. (2.3)
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Remark 2.4. We can see that Aαβ
i j being (δ,R)-vanishing is equivalent to the condition that Aαβ

i j is
(δ,R)-vanishing with respect to x′ and x′′ in the following sense. From direct computations by using
the properties of averages, if Aαβ

i j is (δ,R)-vanishing with respect to x′ and x′′, then Aαβ
i j is (c1δ,R)-

vanishign; conversely if Aαβ
i j is (δ,R)-vanishing, then Aαβ

i j is
(
c2δ,

1
√

2
R
)
-vanishing with respect to x′ and

x′′ where c1 =

√
2|B′r×B′′r |
|Br |

and c2 =

√
|B2r |

|B′r×B′′r |
. From this equivalence, we consider the (δ,R)-vanishing

condition instead of the (δ,R)-vanishing conditions with respect to x′ and x′′ throughout this paper
since the (δ,R)-vanishing condition has a rotational invariant property.

Remark 2.5. We give some comments on Definitions 2.2 and 2.3. First of all, by the scaling invariant
property of our problem (1.1), the value of R in the definitions of both coefficients and domains can
be 1 or any other constants greater than 1. For this reason R ≥ 1 is to be selected for our purpose. In
addition, the constant δ to be determined is also invariant under this scaling.

For (2.1), with Ω being a Reifenberg flat domain, it is known that δ ≤ δ∗ for some constant δ∗ =

δ∗(n). We note that δ∗ = δ∗(n) < 2−n−1 ≤ 1
8 for n ≥ 2; see [28]. From this, we can assume that δ < 1

8
throughout this paper. Moreover, even though the Reifenberg flatness condition given by (2.1) does not
mean any smoothness on the boundary, this gives the following measure density condition:

|Br(y)|
|Br(y) ∩Ω|

≤

(
2

1 − δ

)n

≤

(
16
7

)n

(2.4)

for every y ∈ ∂Ω and r ∈ (0,R]. This will be used in our L2 approach since (2.4) implies the p-capacity
condition with p = 2; see [25, Section 2.2.3], which makes us apply the higher integrability result
in [21] to our method.

Now let us state the global estimate of this paper.

Theorem 2.6. Suppose that F ∈ Lp(Ω,Rmn) for some 2 < p < ∞. Then there exists a small positive
constant δ0 = δ0(ν, L,m, n, p) such that if Aαβ

i j is (δ, 336)-vanishing and Ω is (δ, 336)-Reifenberg flat
with δ ≤ δ0, then for the weak solution uε ∈ H1

0(Ω,Rm) to (1.1), we have

Duε ∈ Lp(Ω,Rmn) (2.5)

with the estimate
‖Duε‖Lp(Ω) ≤ c‖F‖Lp(Ω), (2.6)

where the positive constant c = c(|Ω|, ν, L,m, n, p) is independent of ε.

Remark 2.7. Since (1.6) comes from the Lax-Milgram lemma, Theorem 2.6 holds for p = 2 without
any assumptions. After the estimate (2.6) is obtained for 2 < p < ∞, the estimate (2.6) for the case
when 1 < p < 2 follows by a duality argument if the weak solution uε ∈ H1

0(Ω,Rm) to (1.1) satisfies
that Duε ∈ Lp(Ω,Rmn) for some 1 < p < 2.

Remark 2.8. In view of the regularity results [6,9,14,22], just for interior estimates or local boundary
estimates we can give weaker conditions than those of Theorem 2.6. The weaker conditions are that
Aαβ

i j is (δ,R)-vanishing of codimension 1 in [4] for interior cases and (Aαβ
i j ,Ω) is (δ,R)-vanishing of

codimension 1 in [6, 19] for boundary cases. Both conditions allow Aαβ
i j to be merely measurable
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for one variable, while they have small BMO seminorms for the other variables in some appropriate
coordinates. Second, Ω is to be a (δ,R) Reifenberg flat domain.

In fact, for the interior case, our argument in this paper can be applied to the interior version
for Theorem 2.6 when the coefficients Aαβ

i j are (δ,R)-vanishing of codimension 1. Especially, for the
interior case with l = n − 1, in view of [6, 12] the interior estimate corresponding to Theorem 2.6 is
obtained without considering homogenization since we can regard the direction of homogenization as
just a measurable direction.

On the other hand, for the boundary case we cannot consider in general (Aαβ
i j ,Ω) to be (δ,R)-

vanishing of codimension 1 because of consistency between the coefficients of homogenization and
the domain even though the global regularity result holds under this condition when there is no
homogenization; see [6]. From this observation, with the same idea in this research, we can obtain a
local boundary estimate at the point x0 ∈ ∂Ω whose normal direction is only related to x′′ in the sense
of Definition 2.3 under the condition that (Aαβ

i j ,Ω) is (δ,R)-vanishing of codimension 1.

3. Global gradient estimate

To establish our global gradient estimate, we first introduce some tools for the proof of Theorem 2.6.
Our method is based on the Hardy-Littlewood maximal function.

First, let us recall the Hardy-Littlewood maximal function and its basic properties. If we suppose
that g is a locally integrable function on Rn, then the Hardy-Littlewood maximal function is given by

(Mg)(x) = sup
r>0

1
|Br(x)|

∫
Br(x)
|g(y)|dy.

If g is defined only on a bounded subset of Rn, then we define

Mg =Mg,

where g is the zero extension of g from the bounded set to Rn. This maximal function satisfies the
conditions of the weak 1-1 estimate and the strong p-p estimates. Also, we define the restricted
maximal function

MUg =M(g1U)

where 1U is the characteristic function of U ⊂ Rn.
Our goal in this article is to show the Lp integrability of Duε . For this, we would like to use a sum

of certain estimates for super-level sets. The next lemma gives a relation between the integration and
summation of super-level sets.

Lemma 3.1. [10] Assume that g is a nonnegative, measurable function defined on the bounded domain
Ω ⊂ Rn, and let θ > 0 and λ > 1 be constants. Then for 0 < q < ∞, we have

g ∈ Lq(Ω) ⇐⇒ S =
∑
k≥1

λqk
∣∣∣∣{x ∈ Ω : g(x) > θλk

}∣∣∣∣ < ∞
and

1
c

S ≤ ‖g‖qLq(Ω) ≤ c(|Ω| + S ). (3.1)

The positive constant c depends only on θ, λ and q.
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The following lemma is the Vitali-type covering lemma for our proof. Here, we note that because
of the scaling invariant property of δ and R in Definition 2.3 for Reifenberg flat domains, we only need
to consider R = 1 in the next lemma.

Lemma 3.2. [7, 29] Assume that C and D are measurable sets with C ⊂ D ⊂ Ω and Ω being (δ, 1)-
Reifenberg flat. Also, assume that there exists a small η > 0 such that

|C| < η|B1| (3.2)

and that for each x ∈ Ω and r ∈ (0, 1] with |C ∩ Br(x)| > η|Br(x)|, we have

Br(x) ∩Ω ⊂ D. (3.3)

Then

|C| ≤
(

10
1 − δ

)n

η|D|. (3.4)

The next one is the main lemma in our argument. This shows the second condition of Lemma 3.2
under our settings. In the following argument, we would like to refer [13, 24] to help the readers.

Lemma 3.3. Let 2 < p < ∞. Suppose that uε ∈ H1
0(Ω,Rm) is the weak solution to (1.1). Then there

exists a universal constant η = η(ν, L,m, n, p) so that a small δ = δ(ν, L,m, n, p) > 0 is selected such
that if Aαβ

i j is (δ, 336)-vanishing, Ω is (δ, 336)-Reifenberg flat, and for all y ∈ Ω and every 0 < ρ ≤ 1,
Bρ(y) satisfies ∣∣∣∣{x ∈ Ω :M(|Duε |2) > N2

}
∩ Bρ(y)

∣∣∣∣ > η ∣∣∣Bρ(y)
∣∣∣ , (3.5)

where (
80
7

)n

N pη =
1
2
, (3.6)

then the following holds:

Ω ∩ Bρ(y) ⊂
{
x ∈ Ω :M(|Duε |2) > 1

}
∪

{
x ∈ Ω :M(|F|2) > δ2

}
. (3.7)

Proof. We prove this by contradiction. We assume that (3.5) holds but (3.7) is false. Then there is a
point y1 ∈ Ω ∩ Bρ(y) such that

1
|Br(y1)|

∫
Ωr(y1)

|Duε |2dx ≤ 1 and
1

|Br(y1)|

∫
Ωr(y1)

|F|2dx ≤ δ2 (3.8)

for all r > 0. Under these conditions, there are two cases that we need to consider. One is B14ρ(y) ⊂ Ω,
which is an interior case, and the other is B14ρ(y) 1 Ω, which is a boundary case. Since the proof for
the interior case is eventually the same as that of the boundary case, here, we prove this lemma for the
boundary case.

Now we consider the case that B14ρ(y) 1 Ω. Then we assume that since Ω is (δ, 336)-Reifenberg flat
there exists an appropriate coordinate system, after suitable rotation and translation, so that

B14ρ(y) ∩Ω ⊂ B28ρ ∩Ω (3.9)
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and
B+

336ρ ⊂ Ω336ρ ⊂ B336ρ ∩ {xn > −672δ}. (3.10)

Then from (3.8) we see that

1
|B336ρ|

∫
Ω336ρ

|Duε |2dx ≤
|B672ρ(y1)|
|B336ρ|

1
|B672ρ|

∫
Ω672ρ(y1)

|Duε |2dx ≤ 2n (3.11)

and
1
|B336ρ|

∫
Ω336ρ

|F|2dx ≤
|B672ρ(y1)|
|B336ρ|

1
|B672ρ|

∫
Ω672ρ(y1)

|F|2dx ≤ 2nδ2. (3.12)

Now we consider the following rescaled maps:

ũε(z) =
uε(28ρz)

28ρ
√

2n
, F̃(z) =

F(28ρz)
√

2n
, Ãαβ,ε

i j (z) = Aαβ,ε
i j (28ρz) (3.13)

for z ∈ Ω̃12 =
1

28ρ
Ω336ρ. Then we see that ũε is a weak solution to the following:

 Dα

(
Ãαβ,ε

i j (z)Dβũ
j
ε(z)

)
= Dα f̃ i

α(z) in Ω̃12

ũi
ε(z) = 0 on ∂wΩ̃12

(3.14)

with
B+

12 ⊂ Ω̃12 ⊂ B12 ∩ {zn > −24δ}, (3.15)
1
|B12|

∫
Ω̃12

|Dũε |2dz ≤ 1,
1
|B12|

∫
Ω̃12

|F̃|2dz ≤ δ2 (3.16)

and Ã is (δ, 12)-vanishing.
Under these settings, it suffices to consider the following case:

Ãαβ,ε
i j (z) = Ãαβ,ε

i j (z′, z′′) = Ãαβ
i j

(
z′,

z′′

ε

)
.

This is because the (δ, 12)-vanishing condition, which is a small BMO condition, is invariant under
rotation for the coefficients, even though the direction of homogenization for our problem (1.1) is
changed under rotation.

Next, we let w̃ε ∈ H1(Ω̃11,R
m) be the weak solution to the following: Dα

(
Ãαβ,ε

i j (z)Dβw̃
j
ε(z)

)
= 0 in Ω̃11

w̃i
ε(z) = ũi

ε(z) on ∂Ω̃11.
(3.17)

Then since ũε − w̃ε ∈ H1
0(Ω̃11,R

m) is the weak solution to Dα

(
Ãαβ,ε

i j (z)Dβ

(
ũ j
ε(z) − w̃ j

ε(z)
))

= Dα f̃ i
α(z) in Ω̃11,

ũi
ε(z) − w̃i

ε(z) = 0 on ∂Ω̃11,
(3.18)

a standard L2 estimate follows from (3.18) and (3.16)

1
|B11|

∫
Ω̃11

|Dũε − Dw̃ε |
2dz ≤

c
|B11|

∫
Ω̃11

|F̃|2dz ≤ cδ2 (3.19)
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for some positive constant c = c(ν, L,m, n). In addition, since our domain satisfies the measure density
condition which implies the p-capacity condition with p = 2 according to Remark 2.5, from (3.16)
and (3.17) there exists positive constants σ1 and c = c(ν, L,m, n) such that(∫

Ω̃10

|Dw̃ε |
2+σ1dz

) 1
2+σ1

≤ c. (3.20)

For the sake of our perturbation argument, by using the notation given by (2.2), we now let h̃ε ∈
H1(Ω̃5,R

m) be the weak solution to Dα

(
Ãαβ,ε

i j B′5
(z′′)Dβh̃

j
ε(z)

)
= 0 in Ω̃5

h̃i
ε(z) = w̃i

ε(z) on ∂Ω̃5.
(3.21)

Then w̃ε − h̃ε ∈ H1
0(Ω̃5,R

m) is the weak solution toDα

(
Ãαβ,ε

i j B′5
(z′′)Dβ(w̃ j

ε(z) − h̃ j
ε(z))

)
= −Dα

((
Ãαβ,ε

i j (z) − Ãαβ,ε
i j B′5

(z′′)
)

Dβw̃ j
ε(z)

)
in Ω̃5

w̃i
ε(z) − h̃i

ε(z) = 0 on ∂Ω̃5.
(3.22)

From this, (1.4), Remark 2.4 and (3.20), we compute

1
|B5|

∫
Ω̃5

|Dw̃ε − Dh̃ε |2dz ≤
c
|B5|

∫
Ω̃5

∣∣∣∣∣Ãαβ,ε
i j (z) − Ãαβ,ε

i j B′5
(z′′)

∣∣∣∣∣2 |Dw̃ε |
2dz

≤ c
 1
|B′5 × B′′5 |

∫
B′5×B′′5 ∩Ω̃10

∣∣∣∣∣Ãαβ,ε
i j (z) − Ãαβ,ε

i j B′5
(z′′)

∣∣∣∣∣2 dz
 σ1

2+σ1

≤ c
(

1
|B10|

∫
Ω̃10

∣∣∣∣∣Ãαβ,ε
i j (z) − Ãαβ,ε

i j B′5
(z′′)

∣∣∣∣∣2 dz
) σ1

2+σ1

for some constant c = c(ν, L,m, n) and hence

1
|B5|

∫
Ω̃5

|Dw̃ε − Dh̃ε |2dz ≤ cδ
σ1

2+σ1 . (3.23)

Now we note that since our desired δ has an upper bound by Remark 2.5 we have from (3.23) that
such h̃ε satisfies

1
|B5|

∫
Ω̃5

|Dh̃ε |2dz ≤ c

for some constant c = c(ν, L,m, n) and similar to w̃ε(∫
Ω̃4

|Dh̃ε |2+σ1dz
) 1

2+σ1

≤ c, (3.24)

for some constant c = c(ν, L,m, n). Thus according to [18, Lemma 3.4] for any κ > 0 there exists a
small δ = δ(ν, L,m, n), which depends only on the given structure conditions, such that there exists a
weak solution ṽε ∈ H1(B+

4 ,R
m) to Dα

(
Ãαβ,ε

i j B′5
(z′′)Dβṽ

j
ε(z)

)
= 0 in B+

4

ṽi
ε(z) = 0 on T4

(3.25)
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satisfying
1
|B4|

∫
B+

4

|Dṽε(z)|2dz ≤ c (3.26)

for some constant c = c(ν, L,m, n) and

1
|B4|

∫
B+

4

|Dh̃ε − Dṽε |2dz ≤ κ2. (3.27)

Moreover, since Ãαβ,ε
i j B′5

(z′′) is independent of z′ and Ãαβ,ε
i j B′5

(z′′) = Ãαβ
i j B′5

(
z′′
ε

)
, we can extend our

coefficient Ãαβ,ε
i j B′5

(z′′) for the z′′-variable to the z-variable, that is, Ãαβ,ε
i j B′5

(z) = Ãαβ
i j B′5

(
z
ε

)
. For this

reason, we can apply the result [3, 27] for periodic homogenization to (3.25); then, we obtain for any
2 < q < ∞, that there exists δ = δ(ν, L,m, n, q) such that

Dṽε ∈ Lq(B+
3 )

with the estimate ∫−
B+

3

|Dṽε |qdz
 1

q

≤ c
∫−

B+
4

|Dṽε |2dz
 1

2

.

for some constant c = c(ν, L,m, n, q) independent of ε. Especially, by taking q = p + 1 we have that
there exists δ = δ(ν, L,m, n, p) so that∫−

B+
3

|Dṽε |p+1dz
 1

p+1

≤ c
∫−

B+
4

|Dṽε |2dz
 1

2

(3.28)

where the constant c = c(ν, L,m, n, p) is independent of ε.
Considering uε as the zero extension outside of the domain Ω, we assert that if N1 ≥ 1, then

{z ∈ Ω̃1 :M(|Dũε |2) > N2
1 } ⊂ {z ∈ Ω̃1 :MB3(|Dũε |2) > N2

1 }. (3.29)

For this, we denote z1 =
y1

28ρ and let z0 ∈ {z ∈ Ω̃1 :MB3(|Dũε |2) ≤ N2
1 }. If r ≤ 2, we have that Br(z0) ⊂ B3

and hence
1
|Br|

∫
Br(z0)
|Dũε |2dz ≤ MB3(|Dũε |2)(z0) ≤ N2

1 .

If r > 2, since z1 ∈ Br(z0) ⊂ B2r(z1), we obtain the following from (3.8) and (3.13)

1
|Br|

∫
Br(z0)
|Dũε |2dz ≤

|B2r|

|Br|

1
|B2r|

∫
B2r(z1)

|Dũε |2dz ≤ 1 ≤ N2
1 .

Thus, we prove (3.29) by showing that z0 ∈ {z ∈ Ω̃1 :M(|Dũε |2) ≤ N2
1 }.

Now, we let Ṽε be the zero extension of ṽε from B+
4 to B4, and we let

N2 = N2
12n
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where N1 ≥ 1 is to be determined. Then from (3.29) we compute the following:

1
|Bρ|
|{x ∈ Ω :M(|Duε |2) > N2} ∩ Bρ(y)|

≤
1
|Bρ|
|{x ∈ Ω28ρ :M(|Duε |2) > N2}|

=
28n

|B1|
|{z ∈ Ω̃1 :M(|Dũε |2) > N2

1 }|

≤
28n

|B1|
|{z ∈ Ω̃1 :MB3(|Dũε |2) > N2

1 }|

≤
28n

|B1|
|{z ∈ Ω̃1 :MB3(4|Dũε − Dw̃ε |

2 + 4|Dw̃ε − Dh̃ε |2 + 4|Dh̃ε − DṼε |
2 + 4|DṼε |

2) > N2
1 }|

≤
28n

|B1|

∣∣∣∣∣∣
{

z ∈ Ω̃1 :MB3(|Dũε − Dw̃ε |
2) >

N2
1

16

}∣∣∣∣∣∣
+

28n

|B1|

∣∣∣∣∣∣
{

z ∈ Ω̃1 :MB3(|Dw̃ε − Dh̃ε |2) >
N2

1

16

}∣∣∣∣∣∣
+

28n

|B1|

∣∣∣∣∣∣
{

z ∈ Ω̃1 :MB3(|Dh̃ε − DṼε |
2) >

N2
1

16

}∣∣∣∣∣∣
+

28n

|B1|

∣∣∣∣∣∣
{

z ∈ Ω̃1 :MB3(|DṼε |
2) >

N2
1

16

}∣∣∣∣∣∣
=: I1 + I2 + I3 + I4.

For I1, we use (3.19); then,

I1 ≤
c

N2
1 |B1|

∫
Ω̃3

|Dũε − Dw̃ε |
2dz ≤

cδ2

N2 (3.30)

for some constant c = c(ν, L,m, n).
Applying (3.23), we see that

I2 ≤
c

N2
1 |B1|

∫
Ω̃3

|Dw̃ε − Dh̃ε |2dz ≤
cδ

σ1
2+σ1

N2 (3.31)

for some constant c = c(ν, L,m, n).
For any κ > 0, if δ > 0 is small enough to satisfy (3.24), then (3.24) and (3.27) yield

I3 ≤
c

N2
1

 1
|B1|

∫
B+

3

|Dh̃ε − DṼε |
2dz +

1
|B1|

∫
Ω̃3\B+

3

|Dh̃ε |2dz


≤
c

N2

κ2 +

(∫
Ω̃3

|Dh̃ε |2+σ1dz
) 2

2+σ1
∫

Ω̃3\B+
3

dz
 σ1

2+σ1


≤

c
N2

(
κ2 + δ

σ1
2+σ1

)
(3.32)

for some constant c = c(ν, L,m, n).
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Finally, for δ > 0 in (3.32), from (3.28), we estimate I4 as

I4 ≤
c

N p+1
1 |B1|

∫
B+

3

|Dṽε |p+1dz ≤
c

N p+1

∫−
B+

4

|Dṽε |2dz
 p+1

2

≤
c

N p+1 (3.33)

for some constant c = c(ν, L,m, n, p).
By the estimates from (3.30) to (3.33), we see with (3.6) that

1
|Bρ|
|{x ∈ Ω :M(|Duε |2) > N2} ∩ Bρ(y)|

≤ I1 + I2 + I3 + I4

≤
c

N2

(
κ2 + δ2 + δ

σ1
2+σ1

)
+

c
N p+1

= η
(
cη

2
p−1

(
κ2 + δ2 + δ

σ1
2+σ1

)
+ cη

1
p

)
.

for some constant c = c(ν, L,m, n, p). Now we choose η satisfying

0 < cη ≤
1
3

; (3.34)

then N is given by (3.6). Next, we take κ > 0 so that

0 < cη
2
p−1κ ≤

1
3
. (3.35)

Finally, we can select δ > 0 for such κ > 0 in (3.35) which makes (3.26) and (3.27) possible so that

0 < cη
2
p−1

(
δ2 + δ

σ1
2+σ1

)
≤

1
3
. (3.36)

Therefore from (3.34) to (3.36), we obtain

1
|Bρ|
|{x ∈ Ω :M(|Duε |2) > N2} ∩ Bρ(y)| ≤ η

which contradicts (3.5). This completes the proof.
�

Proof of Theorem 2.6. Fix any p ∈ (2,∞) and let uε ∈ H1
0(Ω,Rm) be the weak solution to (1.1). We

assume that F ∈ Lp(Ω,Rmn), Aαβ
i j is (δ, 336)-vanishing and Ω is (δ, 336)-Reifenberg flat, and we let

η and N be constants in Lemma 3.3. Additionally, we let δ1 be the constant δ = δ(ν, L,m, n, p) in
Lemma 3.3 and we denote c by the constants given by the known quantities such as |Ω|, ν, L,m, nand p.

We now suppose that

‖F‖L2(Ω) ≤ δ0 (3.37)

by the normalization
uε

1
δ0
‖F‖L2(Ω)

and
F

1
δ0
‖F‖L2(Ω)

where the constant δ0 = δ0(ν, L,m, n, p) is to be

determined. Then, we want to show first that

‖M(|Duε |2)‖
p
2

L
p
2 (Ω)
≤ c + c‖F‖p

Lp(Ω). (3.38)

AIMS Mathematics Volume 8, Issue 11, 27643–27658.
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To prove (3.37), we write
C =

{
x ∈ Ω :M(|Duε |2) > N2

}
and

D =
{
x ∈ Ω :M(|Duε |2) > 1

}
∪

{
x ∈ Ω :M(|F|2) > δ2

}
.

By the weak 1-1 estimate and the L2-estimate, we see that if ‖F‖L2(Ω) ≤ δ2, then we can take δ2 =

δ2(ν, L,m, n) such that

|C| ≤
c

N2

∫
Ω

|Duε |2dx ≤
c

N2

∫
Ω

|F|2dx ≤
cδ2

2

N2 < η|B1|. (3.39)

Now we let
δ0 = min{δ1, δ2, δ∗}

which depends only on ν, L,m, n and p where δ∗ = δ∗(n) in Remark 2.5.
For any δ ≤ δ0, this verifies the first condition of Lemma 3.2. Moreover, the second condition of

Lemma 3.2 follows from Lemma 3.3. Thus we apply Lemma 3.2 for such δ0 to see that

|C| < η1|D| ≤ η1

∣∣∣∣{x ∈ Ω :M(|Duε |2) > 1
}∣∣∣∣ + η1

∣∣∣∣{x ∈ Ω :M(|F|2) > δ2
0

}∣∣∣∣ (3.40)

where

η1 =

(
10

1 − δ0

)n

η ≤

(
80
7

)n

η

since δ0 ≤ δ∗ <
1
8 ; see Remark 2.5.

By an iteration from (3.40), we have∣∣∣∣{x ∈ Ω :M(|Duε |2) > N2k
}∣∣∣∣ ≤ ηk

1

∣∣∣∣{x ∈ Ω :M(|Duε |2) > 1
}∣∣∣∣

+

k∑
i=1

ηi
1

∣∣∣∣{x ∈ Ω :M(|F|2) > δ2
0N2(k−i)

}∣∣∣∣ . (3.41)

Applying Lemma 3.1 to (3.41) for

g =M(|Duε |2), λ = N2, θ = 1, and q =
p
2
,

we obtain

‖M(|Duε |2)‖
p
2

L
p
2 (Ω)
≤ c

|Ω| + ∑
k≥1

N2k p
2

∣∣∣∣{x ∈ Ω :M(|Duε |2) > N2k
}∣∣∣∣

≤ c

1 +
∑
k≥1

Nkpηk
1

∣∣∣∣{x ∈ Ω :M(|Duε |2) > 1
}∣∣∣∣

+ c
∑
k≥1

Nkp
k∑

i=1

ηi
1

∣∣∣∣{x ∈ Ω :M(|F|2) > δ2
0N2(k−i)

}∣∣∣∣
=: S 1 + S 2.
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Then S 1 is estimated as follows:

S 1 ≤ c

1 + |Ω|
∑
k≥1

(N pη1)k

 .
Also, S 2 is computed as follows:

S 2 ≤ c
∑
k≥1

Nkp
k∑

i=1

ηi
1

∣∣∣∣{x ∈ Ω :M(|F|2) > δ2
0N2(k−i)

}∣∣∣∣
= c

∑
i≥1

(N pη1)i
∑
k≥i

(N p)k−i
∣∣∣∣{x ∈ Ω :M(|F|2) > δ2

0N2(k−i)
}∣∣∣∣

≤ c
∑
i≥1

(N pη1)i
‖F‖p

Lp(Ω)

δ
p
0

≤ c
∑
i≥1

(N pη1)i
‖F‖p

Lp(Ω).

Therefore, we have
‖M(|Duε |2)‖

p
2

L
p
2 (Ω)
≤ S 1 + S 2 ≤ c + c‖F‖p

Lp(Ω) (3.42)

since N pη1 = N p
(

10
1−δ0

)n
η ≤ N p

(
80
7

)n
η = 1

2 from (3.6). Now, from the estimate (3.42) we renormalize
our problem returning to the original function to find that

‖M(|Duε |2)‖
p
2

L
p
2 (Ω)

≤ c‖F‖p
L2(Ω) + c‖F‖p

Lp(Ω)

≤ c|Ω|1−
2
p ‖F‖p

Lp(Ω) + c‖F‖p
Lp(Ω).

Finally, the strong p-p estimate yields

‖Duε‖
p
Lp(Ω) = ‖|Duε |2‖

p
2

L
p
2 (Ω)
≤ c‖M(|Duε |2)‖

p
2

L
p
2 (Ω)
≤ c‖F‖p

Lp(Ω).

This completes the proof.
�

4. Conclusions

The proof of this paper is based on a perturbation argument in the main lemma, Lemma 3.3. Under
this argument for directional homegenization, in the proof of Lemma 3.3 we can compare the original

coefficients Ãαβ,ε
i j (z′, z′′) with Ãαβ,ε

i j B′5
(z′′) by using the small BMO condition to derive (3.23) and then

we can apply the result in [3] to (3.25) since we can consider (3.25) as homogenization for whole
variables. For these reasons, we can derive Theorem 2.6 for directional homogenization.
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