Research article Special Issues

Positivity analysis for mixed order sequential fractional difference operators

  • Received: 30 August 2022 Revised: 03 October 2022 Accepted: 13 October 2022 Published: 08 November 2022
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • We consider the positivity of the discrete sequential fractional operators $ \left(^{\rm RL}_{a_{0}+1}\nabla^{\nu_{1}}\, ^{\rm RL}_{a_{0}}\nabla^{\nu_{2}}{f}\right)(\tau) $ defined on the set $ \mathscr{D}_{1} $ (see (1.1) and Figure 1) and $ \left(^{\rm RL}_{a_{0}+2}\nabla^{\nu_{1}}\, ^{\rm RL}_{a_{0}}\nabla^{\nu_{2}}{f}\right)(\tau) $ of mixed order defined on the set $ \mathscr{D}_{2} $ (see (1.2) and Figure 2) for $ \tau\in\mathbb{N}_{a_{0}} $. By analysing the first sequential operator, we reach that $ \bigl(\nabla {f}\bigr)(\tau)\geqq 0, $ for each $ \tau\in{\mathbb{N}}_{a_{0}+1} $. Besides, we obtain $ \bigl(\nabla {f}\bigr)(3)\geqq 0 $ by analysing the second sequential operator. Furthermore, some conditions to obtain the proposed monotonicity results are summarized. Finally, two practical applications are provided to illustrate the efficiency of the main theorems.

    Citation: Pshtiwan Othman Mohammed, Dumitru Baleanu, Thabet Abdeljawad, Soubhagya Kumar Sahoo, Khadijah M. Abualnaja. Positivity analysis for mixed order sequential fractional difference operators[J]. AIMS Mathematics, 2023, 8(2): 2673-2685. doi: 10.3934/math.2023140

    Related Papers:

  • We consider the positivity of the discrete sequential fractional operators $ \left(^{\rm RL}_{a_{0}+1}\nabla^{\nu_{1}}\, ^{\rm RL}_{a_{0}}\nabla^{\nu_{2}}{f}\right)(\tau) $ defined on the set $ \mathscr{D}_{1} $ (see (1.1) and Figure 1) and $ \left(^{\rm RL}_{a_{0}+2}\nabla^{\nu_{1}}\, ^{\rm RL}_{a_{0}}\nabla^{\nu_{2}}{f}\right)(\tau) $ of mixed order defined on the set $ \mathscr{D}_{2} $ (see (1.2) and Figure 2) for $ \tau\in\mathbb{N}_{a_{0}} $. By analysing the first sequential operator, we reach that $ \bigl(\nabla {f}\bigr)(\tau)\geqq 0, $ for each $ \tau\in{\mathbb{N}}_{a_{0}+1} $. Besides, we obtain $ \bigl(\nabla {f}\bigr)(3)\geqq 0 $ by analysing the second sequential operator. Furthermore, some conditions to obtain the proposed monotonicity results are summarized. Finally, two practical applications are provided to illustrate the efficiency of the main theorems.



    加载中


    [1] J. L. G. Guirao, P. O. Mohammed, H. M. Srivastava, D. Baleanu, M. S. Abualrub, Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results, AIMS Mathematics, 7 (2022), 18127–18141. https://doi.org/10.3934/math.2022997 doi: 10.3934/math.2022997
    [2] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [3] T. Abdeljawad, Different type kernel $h$–fractional differences and their fractional $h$–sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [4] P. O. Mohammed, H. M. Srivastava, D. Baleanu, K. M. Abualnaja, Modified fractional difference operators defined using Mittag-Leffler kernels, Symmetry, 14 (2022), 1519. https://doi.org/10.3390/sym14081519 doi: 10.3390/sym14081519
    [5] F. M. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discr. Math., 9 (2015), 139–149. http://dx.doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
    [6] F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inform., 151 (2017), 313–324. http://dx.doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [7] F. M. Atici, S. S. Ayan, Modeling with fractional difference equations, J. Math. Anal. Appl., 369 (2010), 1–9. http://dx.doi.org/10.1016/j.jmaa.2010.02.009 doi: 10.1016/j.jmaa.2010.02.009
    [8] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [9] C. R. Chen, M. Bohner, B. G. Jia, Ulam-hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [10] R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
    [11] C. Lizama, The poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. http://dx.doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [12] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [13] Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Cmput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884
    [14] F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [15] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using $h$-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.7083
    [16] F. M. Atici, M. Atici, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmaco kinetics pharmaco dynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24.
    [17] A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049
    [18] R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F
    [19] G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. http://dx.doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [20] J. W. He, L. Zhang, Y. Zhou, B. Ahmad, Existence of solutions for fractional difference equations via topological degree methods, Adv. Differ. Equ., 2018 (2018), 153. https://doi.org/10.1186/s13662-018-1610-2 doi: 10.1186/s13662-018-1610-2
    [21] R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel), 102 (2014), 293–299. https://doi.org/10.1007/S00013-014-0620-X doi: 10.1007/S00013-014-0620-X
    [22] C. S. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. http://dx.doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
    [23] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [24] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [25] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Soliton. Fract., 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [26] X. Liu, F. F. Du, D. R. Anderson, B. Jia, Monotonicity results for nabla fractional h-difference operators, Math. Methods Appl. Sci., 44 (2020), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823
    [27] R. Dahal, C. S. Goodrich, B. Lyons, Monotonicity results for sequential fractional differences of mixed orders with negative lower bound, J. Differ. Equ. Appl., 27 (2021), 1574–1593. https://doi.org/10.1080/10236198.2021.1999434 doi: 10.1080/10236198.2021.1999434
    [28] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [29] C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 44 (2021), 221–229. https://doi.org/10.1515/anly-2021-0011 doi: 10.1515/anly-2021-0011
    [30] C. S. Goodrich, Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order, Analysis, 22 (2018). https://doi.org/10.1007/S11117-017-0527-4
    [31] P. O. Mohammed, C. S. Goodrich, F. K. Hamasalh, A. Kashuri, Y. S. Hamed, On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag-Leffler kernel, Math. Methods Appl. Sci., 45 (2022), 6931–6410. https://doi.org/10.1002/mma.8176 doi: 10.1002/mma.8176
    [32] C. S. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, 2015.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1205) PDF downloads(106) Cited by(4)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog