
We consider the positivity of the discrete sequential fractional operators (RLa0+1∇ν1RLa0∇ν2f)(τ) defined on the set D1 (see (1.1) and
Citation: Pshtiwan Othman Mohammed, Dumitru Baleanu, Thabet Abdeljawad, Soubhagya Kumar Sahoo, Khadijah M. Abualnaja. Positivity analysis for mixed order sequential fractional difference operators[J]. AIMS Mathematics, 2023, 8(2): 2673-2685. doi: 10.3934/math.2023140
[1] | Pshtiwan Othman Mohammed, Musawa Yahya Almusawa . On analysing discrete sequential operators of fractional order and their monotonicity results. AIMS Mathematics, 2023, 8(6): 12872-12888. doi: 10.3934/math.2023649 |
[2] | Juan L. G. Guirao, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Dumitru Baleanu, Marwan S. Abualrub . Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results. AIMS Mathematics, 2022, 7(10): 18127-18141. doi: 10.3934/math.2022997 |
[3] | Sarkhel Akbar Mahmood, Pshtiwan Othman Mohammed, Dumitru Baleanu, Hassen Aydi, Yasser S. Hamed . Analysing discrete fractional operators with exponential kernel for positivity in lower boundedness. AIMS Mathematics, 2022, 7(6): 10387-10399. doi: 10.3934/math.2022579 |
[4] | Erdal Bas, Ramazan Ozarslan . Theory of discrete fractional Sturm–Liouville equations and visual results. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593 |
[5] | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390 |
[6] | Pshtiwan Othman Mohammed, Donal O'Regan, Aram Bahroz Brzo, Khadijah M. Abualnaja, Dumitru Baleanu . Analysis of positivity results for discrete fractional operators by means of exponential kernels. AIMS Mathematics, 2022, 7(9): 15812-15823. doi: 10.3934/math.2022865 |
[7] | Yong Zhang, Xiaobing Bao, Li-Bin Liu, Zhifang Liang . Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid. AIMS Mathematics, 2021, 6(8): 8611-8624. doi: 10.3934/math.2021500 |
[8] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[9] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[10] | Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686 |
We consider the positivity of the discrete sequential fractional operators (RLa0+1∇ν1RLa0∇ν2f)(τ) defined on the set D1 (see (1.1) and
Discrete operators are the most essential branches of discrete fractional calculus that enable problems where the change of variables can be modeled in a numerical or theoretical continuum to derive, from it, the variation of these elements in specific kernels [1,2,3,4]. Besides, the discrete fractional difference/sum equations have important applications in areas like fluid dynamics [5,6,7], heat or mass transfer [8,9,10], chemical reaction processes [11,12,13], geometry [14,15], ecology [16,17], and contaminant transport [18,19,20].
The positivity and monotonicity analysis are basic parts of applied mathematics and mathematical analysis, and the development of discrete fractional calculus has enabled powerful mathematical tools for these areas. These kinds of problem can be solved either by analysing discrete operators or by using integrating by parts. By applying these techniques, it is possible to determine when the nabla operators are positive or the function is monotonically increasing or decreasing. Also, these have lead to additive (or splitting) schemes, but so far they are examined with various delta and nabla fractional difference operators in time space Na0 (see previous works [21,22,23,24,25,26] and the references therein for more details).
In the literature of discrete fractional calculus mixed order sequential fractional difference operator has a form (RLa0∇ν1RLa0∇ν2f)(τ), where ν1 and ν2 are two different orders. In addition, in most of the research on monotonicity and positivity analysis, discrete sequential fractional operators and mixed order fractional operators in discrete fractional environments are two of the most active research areas as you can see in previous studies. For this reason, there exists a wide literature about its reanalysis, numerically and analytically, see for example [27,28,29,30,31]. Therefore, it is of interest to analyse a discrete sequential fractional operator of mixed order correctly, provided that they allow a development of the applications and theory based on them successfully.
In view of the above discussion, this paper focuses on analysing discrete sequential fractional operator of mixed orders (RLa0+1∇ν1RLa0∇ν2f)(τ) and (RLa0+2∇ν1RLa0∇ν2f)(τ), and applying these to handle the positivity of (∇f)(τ) on the sets
D1:={(ν2,ν1)∈(0,1)×(1,2);1<ν1+ν2<2}, | (1.1) |
and
D2:={(ν2,ν1)∈(1,2)×(0,1);1<ν1+ν2<2}, | (1.2) |
respectively. The regions of these sets are plotted in the Figures 1 and 2 below.
The article set-up is structured as follows: in Section 2, we recall the basic discrete fractional operator tools and investigate the main lemmas and theorems concerning the designation of discrete sequential fractional operator of mixed orders. The sets D1 and D2, and the main theorems on these sets are given in Section 3. Section 4 is devoted to the study of practical applications with specificity of the order of the discrete sequential fractional operator. Finally, the conclusion and significance of the present article are elaborated in Section 5.
In this section, we will list some relevant preliminaries including the definition of discrete fractional difference and sum operators and their alternatives in the sense of Riemann-Liouville defined on the set Na0, defined by Na0:={a0,a0+1,a0+2,…}.
Definition 2.1. [32,Definition 3.58] Suppose that f is defined on Na0 and 0<α is the order of the discrete fractional operator. Then the ∇−fractional sum operator is given as follows
(RLa0∇−αf)(τ)=τ∑s=a0+1(τ+1−s)¯α−1Γ(α)f(s),forτinNa0+1, | (2.1) |
where it is important to state that
τ¯α=Γ(α+τ)Γ(τ),∇τ¯α=ατ¯α−1, | (2.2) |
where these lead to zero when the denominators are undefined but the numerators are well defined.
Definition 2.2. [26,Lemma 2.1] Suppose that f is defined on Na0 and ℓ−1<α<ℓ is the order of the discrete fractional operator. Then the ∇−fractional difference operator is given as follows
(RLa0∇αf)(τ)=1Γ(−α)τ∑s=a0+1(τ+1−s)¯−α−1f(s),forτinNa0+ℓ,(∇f)(τ)=f(τ)−f(τ−1),forτ∈Na0+1. | (2.3) |
Lemma 2.1. Let ν1>0 and f be defined on Na0. Then for 0<ν2<1, the following identity can be obtained
(RLa0+1∇−ν1RLa0∇ν2f)(τ)=(RLa0∇ν2−ν1f)(τ)−(τ−a0)¯ν1−1Γ(ν1)f(a0+1), | (2.4) |
and for 1<ν2<2, the following identity can be obtained
(RLa0+2∇−ν1RLa0∇ν2f)(τ)=(RLa0∇ν2−ν1f)(τ)−[(τ−a0)¯ν1−1Γ(ν1)−ν2(τ−a0−1)¯ν1−1Γ(ν1)]f(a0+1)−(τ−a0−1)¯ν1−1Γ(ν1)f(a0+2), | (2.5) |
for τ∈Na0+2.
Proof. Let g(τ):=(RLa0∇ν2f)(τ). Then by considering (2.1), we have
(RLa0+1∇−ν1RLa0∇ν2f)(τ)=(RLa0+1∇−ν1g)(τ)=1Γ(ν1)τ∑s=a0+2(τ−s+1)¯ν1−1g(s)=1Γ(ν1)τ∑s=a0+1(τ−s+1)¯ν1−1g(s)−(τ−a0)¯ν1−1Γ(ν1)g(a0+1)=(RLa0∇−ν1RLa0∇ν2f)(τ)−(τ−a0)¯ν1−1Γ(ν1)f(a0+1)=(RLa0∇ν2−ν1f)(τ)−(τ−a0)¯ν1−1Γ(ν1)f(a0+1), |
where we have used
g(a0+1)=(RLa0∇ν2f)(a0+1)=1Γ(−ν2)a0+1∑s=a0+1(a0+2−s)¯−ν2−1f(s)=f(a0+1), |
which completes the proof of (2.4). Similarly, we can proceed
(RLa0+2∇−ν1RLa0∇ν2f)(τ)=(RLa0+2∇−ν1g)(τ)=(RLa0∇−ν1RLa0∇ν2f)(τ)−(τ−a0)¯ν1−1Γ(ν1)g(a0+1)−(τ−a0−1)¯ν1−1Γ(ν1)g(a0+2)=(RLa0∇ν2−ν1f)(τ)−[(τ−a0)¯ν1−1Γ(ν1)−ν2(τ−a0−1)¯ν1−1Γ(ν1)]f(a0+1)−(τ−a0−1)¯ν1−1Γ(ν1)f(a0+2), |
where we have used
g(a0+2)=1Γ(−ν2)a0+2∑s=a0+1(a0+3−s)¯−ν2−1f(s)=f(a0+2)−ν2f(a0+1), |
which completes the proof of (2.5). Hence, the proof is done.
Theorem 2.1. Let f be defined on Na0. Then for 0<ν2<1 and 1<ν1≦2, the following identity holds
(RLa0+1∇ν1RLa0∇ν2f)(τ)=(RLa0∇ν2+ν1f)(τ)−(τ−a0)¯−ν1−1Γ(−ν1)f(a0+1), | (2.6) |
and for 1<ν2<2 and 0<ν1≦1, we have
(RLa0+2∇ν1RLa0∇ν2f)(τ)=(RLa0∇ν2+ν1f)(τ)−[(τ−a0)¯−ν1−1Γ(−ν1)−ν2(τ−a0−1)¯−ν1−1Γ(−ν1)]f(a0+1)−(τ−a0−1)¯−ν1−1Γ(−ν1)f(a0+2), | (2.7) |
for τ∈Na0+3.
Proof. With the help of Lemma 2.1, we have for 0<ν2<1 and 1<ν1≦2:
(RLa0+1∇ν1RLa0∇ν2f)(τ)=∇2(RLa0+1∇−(2−ν1)RLa0∇ν2f)(τ)=∇2[(RLa0+1∇ν2+ν1−2f)(τ)−(τ−a0)¯−ν1+1Γ(ν1)f(a0+1)]=(RLa0∇ν2+ν1f)(τ)−(τ−a0)¯−ν1−1Γ(−ν1)f(a0+1), |
which completes the proof of (2.6). In similar way, we have for 1<ν2<2 and 0<ν1≦1:
(RLa0+2∇ν1RLa0∇ν2f)(τ)=∇(RLa0+2∇−(1−ν1)RLa0∇ν2f)(τ)=∇[(RLa0∇ν2+ν1−1f)(τ)−((τ−a0)¯−ν1Γ(1−ν1)−ν2(τ−a0−1)¯−ν1Γ(1−ν1))f(a0+1)−(τ−a0−1)¯−ν1Γ(1−ν1)f(a0+2)]=(RLa0∇ν2+ν1f)(τ)−[(τ−a0)¯−ν1−1Γ(−ν1)−ν2(τ−a0−1)¯−ν1−1Γ(−ν1)]f(a0+1)−(τ−a0−1)¯−ν1−1Γ(−ν1)f(a0+2), |
which completes the proof of (2.7), where in both we have used [32,Lemma 3.108] and [32,Theorem 3.57]. Thus, the proof is done.
We start with the first result concerning the ∇−fractional difference on the set D1.
Lemma 3.1. Let f be defined on Na0, (ν2,ν1)∈D1 and (RLa0+1∇ν1RLa0∇ν2f)(τ)≧0, for τ∈Na0+3. Then the following inequality can be obtained:
(∇f)(a0+μ)≧[(μ)¯−ν1−1Γ(−ν1)−(μ)¯−ν1+ν2Γ(1−ν1−ν2)]f(a0+1)−1Γ(1−ν1−ν2)μ−3∑ȷ=0(μ−ȷ−1)¯−ν1−ν2(∇f)(a0+ȷ+2), | (3.1) |
for μ∈N3. Furthermore,
(μ)¯−ν1−1Γ(−ν1)−(μ)¯−ν1+ν2Γ(1−ν1−ν2)>0, | (3.2) |
and
−1Γ(1−ν1−ν2)(μ−ȷ−1)¯−ν1−ν2>0, | (3.3) |
for ȷ=0,1,…,μ−4 and μ∈N4.
Proof. The identity (2.6) and Definition (2.3) enable us to write
(RLa0+1∇ν1RLa0∇ν2f)(τ)=(RLa0∇ν2+ν1f)(τ)−(τ−a0)¯−ν1−1Γ(−ν1)f(a0+1)=1Γ(−ν2−ν1)τ∑s=a0+1(τ−s+1)¯−ν2−ν1−1f(s)−(τ−a0)¯−ν1−1Γ(−ν1)f(a0+1)by=(2.2)1Γ(1−ν2−ν1)τ∑s=a0+1∇τ(τ−s+1)¯−ν2−ν1f(s)−(τ−a0)¯−ν1−1Γ(−ν1)f(a0+1)=1Γ(1−ν2−ν1)[(τ−a0)¯−ν2−ν1f(a0+1)+Γ(1−ν2−ν1)(∇f)(τ)+τ−1∑s=a0+2(τ−s+1)¯−ν2−ν1(∇f)(s)]−(τ−a0)¯−ν1−1Γ(−ν1)f(a0+1)=(∇f)(τ)+[(τ−a0)¯−ν2−ν1Γ(1−ν2−ν1)−(τ−a0)¯−ν1−1Γ(−ν1)]f(a0+1)+1Γ(1−ν2−ν1)τ−1∑s=a0+2(τ−s+1)¯−ν2−ν1(∇f)(s), | (3.4) |
where we have used that (0)¯−ν2−ν1=0. By using the assumption that (RLa0+1∇ν1RLa0∇ν2f)(τ)≧0, it follows that
(∇f)(τ)≧[(τ−a0)¯−ν1−1Γ(−ν1)−(τ−a0)¯−ν2−ν1Γ(1−ν2−ν1)]f(a0+1)−1Γ(1−ν2−ν1)τ−1∑s=a0+2(τ−s+1)¯−ν2−ν1(∇f)(s). |
Changing the variable μ:=τ−a0 gives the desired inequality (3.1).
The last part of the lemma is easy to be proved by considering the definition (2.2) as follows
(μ)¯−ν1−1Γ(−ν1)=<0⏞(−ν1)<0⏞(1−ν1)⋯(μ−3−ν1)(μ−2−ν1)(μ−1)!>0, |
and
(μ)¯−ν1+ν2Γ(1−ν1−ν2)=<0⏞(1−ν1−ν2)(2−ν1−ν2)⋯(μ−3−ν1−ν2)(μ−2−ν1−ν2)(μ−1)!<0, |
for μ∈N3, 1<ν1<2 and 1<ν1+ν2<2, which rearranges to (3.2). And we can obtain (3.2) as follows
−1Γ(1−ν1−ν2)(μ−ȷ−1)¯−ν1−ν2−(μ−ȷ−2−ν1−ν2)(μ−ȷ−3−ν1−ν2)⋯(2−ν1−ν2)<0⏞(1−ν1−ν2)(μ−ȷ−2)!>0, |
for 1<ν1+ν2<2 and ȷ=0,1,…,μ−4 with μ∈N4. This ends the proof.
Theorem 3.1. Under the assumptions of Lemma 3.1 together with
(1) f(a0+1)≧0;
(2) (∇f)(a0+1)≧0;
(3) (∇f)(a0+2)≧0,
one can have (∇f)(τ)≧0, for τ∈Na0+1.
Proof. From (3.1)–(3.3), the assumption (a) we have inductively that (∇f)(τ)≧0, for each τ∈Na0+3. Furthermore, from the assumptions (b) and (c) we get (∇f)(τ)≧0, for τ∈Na0+1. This concludes the proof.
Our second result concerning the ∇−fractional difference on the set D2.
Lemma 3.2. Let f be defined on Na0, (ν2,ν1)∈D2 and (RLa0+2∇ν1RLa0∇ν2f)(τ)≧0, for τ∈Na0+3. Then the following inequality holds
(∇f)(a0+μ)≧[(μ)¯−ν1−1Γ(−ν1)−(μ)¯−ν1+ν2Γ(1−ν1−ν2)−ν2(μ−1)¯−ν1−1Γ(−ν1)]f(a0+1)+(μ−1)¯−ν1−1Γ(−ν1)f(a0+2)−1Γ(1−ν1−ν2)μ−3∑ȷ=0(μ−ȷ−1)¯−ν1−ν2(∇f)(a0+ȷ+2), | (3.5) |
for μ∈N3.
Proof. In view of the identity (2.7) and (3.4), we have
(RLa0+2∇ν1RLa0∇ν2f)(τ)=1Γ(−ν2−ν1)τ∑s=a0+1(τ−s+1)¯−ν2−ν1−1f(s)−[(τ−a0)¯−ν1−1Γ(−ν1)−ν2(τ−a0−1)¯−ν1−1Γ(−ν1)]f(a0+1)−(τ−a0−1)¯−ν1−1Γ(−ν1)f(a0+2)=(∇f)(τ)−[(τ−a0)¯−ν1−1Γ(−ν1)−(τ−a0)¯−ν1+ν2Γ(1−ν1−ν2)−ν2(τ−a0−1)¯−ν1−1Γ(−ν1)]f(a0+1)−(τ−a0−1)¯−ν1−1Γ(−ν1)f(a0+2)+1Γ(1−ν2−ν1)τ−1∑s=a0+2(τ−s+1)¯−ν2−ν1(∇f)(s). |
By applying the assumption (RLa0+2∇ν1RLa0∇ν2f)(τ)≧0 to the last identity, we get
(∇f)(τ)≧[(τ−a0)¯−ν1−1Γ(−ν1)−(τ−a0)¯−ν1+ν2Γ(1−ν1−ν2)−ν2(τ−a0−1)¯−ν1−1Γ(−ν1)]f(a0+1)+(τ−a0−1)¯−ν1−1Γ(−ν1)f(a0+2)−1Γ(1−ν2−ν1)τ−1∑s=a0+2(τ−s+1)¯−ν2−ν1(∇f)(s), |
for τ∈Na0+3. The last inequality together with changing the variable μ:=τ−a0 rearrange the desired inequality (3.5).
Theorem 3.2. Let the assumptions of Lemma 3.2 be fulfilled with τ=a0+3. Suppose that
(1) f(a0+1)≧0;
(2) (∇f)(a0+2)≧0;
(3) δf(a0+1)≧f(a0+2)≧0, for some 1≦δ.
Then one can have (∇f)(a0+3)≧0 such that δ≦1+3ν2−ν22−22ν1.
Proof. Rewriting (3.5) at μ=3 to get
(∇f)(a0+3)≧[(3)¯−ν1−1Γ(−ν1)−(3)¯−ν1+ν2Γ(1−ν1−ν2)−ν2(2)¯−ν1−1Γ(−ν1)]f(a0+1)+(2)¯−ν1−1Γ(−ν1)f(a0+2)−(2)¯−ν1−ν2Γ(1−ν1−ν2)(∇f)(a0+2). | (3.6) |
We know that −(2)¯−ν1−ν2Γ(1−ν1−ν2)=−(1−ν1−ν2)>0 by 1<ν1+ν2<2, and (∇f)(a0+2)≧0 by condition (b), so (3.6) becomes
(∇f)(a0+3)≧[(3)¯−ν1−1Γ(−ν1)−(3)¯−ν1+ν2Γ(1−ν1−ν2)−ν2(2)¯−ν1−1Γ(−ν1)]f(a0+1)+(2)¯−ν1−1Γ(−ν1)f(a0+2)=[−12ν1(1−ν1)−12(2−ν1−ν2)(1−ν1−ν2)+ν2ν1]f(a0+1)−ν1f(a0+2)by≧condition(c)[−12ν1(1−ν1)−12(2−ν1−ν2)(1−ν1−ν2)+ν2ν1]f(a0+1)−δν1f(a0+1)=2ν1+3ν2−2δν1−ν22−22f(a0+1), |
which is ≧0 by condition (a) provided that 2ν1+3ν2−2δν1−ν22−22≧0, or equivalently, δ≦1+3ν2−ν22−22ν1. Hence, the proof is finished.
Remark 3.1. It is worth mentioning that in Theorem 3.2 the quantity 3ν2−ν22−22ν1 is positive for (ν2,ν1)∈D2.
Here we provide two numerical examples in infinite time set Na0 to demonstrate the performance of Theorems 3.1 and 3.2. Furthermore, we have performed all implementations using Matlab 2018-b, installed on laptop with Intel(R) Core(TM) i7–2600 CPU@2.30GHz and 16.00 Gb-RAM running on Windows 10 operating system.
Example 4.1. Let f be a function defined by
f(τ)=2τ−a0,forτ∈Na0. |
From the proof of Lemma 3.1, we have for τ:=a0+μ:
(RLa0+1∇ν1RLa0∇ν2f)(a0+μ)=1Γ(−ν2−ν1)μ−1∑ȷ=0(μ−ȷ)¯−ν2−ν1−1f(ȷ+a0+1)−(μ)¯−ν1−1Γ(−ν1)f(a0+1), |
for μ∈N3. Letting a0=0, it follows that
(RL1∇ν1RL0∇ν2f)(μ)=1Γ(−ν2−ν1)μ−1∑ȷ=0(μ−ȷ)¯−ν2−ν1−1f(ȷ+1)−(μ)¯−ν1−1Γ(−ν1)f(1)=1Γ(−ν2−ν1)μ−1∑ȷ=0Γ(μ−ȷ−ν2−ν1−1)Γ(μ−ȷ)2ȷ+1−2Γ(μ−ν1−1)Γ(−ν1)Γ(μ), | (4.1) |
for μ∈N3. Computing (4.1) at ν1=1.2, ν2=0.3, and some values of μ, we get
(RL1∇ν1RL0∇ν2f)(μ)=51100,forμ=3,=55611000,forμ=4,=3741332,forμ=5, |
and so on, we get (RL1∇ν1RL0∇ν2f)(μ)≧0, for each μ∈N3. Furthermore, we have
f(1)=2,(∇f)(1)=1,(∇f)(2)=2. |
Hence, Theorem 3.1 confirms that (∇f)(μ)≧0, for each μ∈N1.
Example 4.2. In this example, let us define f by
f(τ)=(32)τ−a0,forτ∈Na0. |
In view of the proof of Lemma 3.2, we have for τ:=a0+μ:
(RLa0+2∇ν1RLa0∇ν2f)(a0+μ)=1Γ(−ν2−ν1)μ−1∑ȷ=0(μ−ȷ)¯−ν2−ν1−1f(ȷ+a0+1)−[(μ)¯−ν1−1Γ(−ν1)−ν2(μ−1)¯−ν1−1Γ(−ν1)]f(a0+1)−(μ−1)¯−ν1−1Γ(−ν1)f(a0+2), |
for μ∈N3. Putting a0=0, it follows that
(RL2∇ν1RL0∇ν2f)(μ)=1Γ(−ν2−ν1)μ−1∑ȷ=0Γ(μ−ȷ−ν2−ν1−1)Γ(μ−ȷ)(32)ȷ+1−32[Γ(μ−ν1−1)Γ(−ν1)Γ(μ)−ν2Γ(μ−ν1−2)Γ(−ν1)Γ(μ−1)]−94Γ(μ−ν1−2)Γ(−ν1)Γ(μ−1), | (4.2) |
for μ∈N3. Calculating (4.2) at ν2=1.1, ν1=0.05, and μ=3 to obtain
(RL2∇ν1RL0∇ν2f)(3)=393400≧0. |
Besides, by choosing 1≦δ=1.6≦1+3ν2−ν22−22ν1=1.9, we have
f(1)=1.5,f(2)=2.25,(∇f)(2)=0.75,andf(2)−δf(1)=−0.15. |
Then (∇f)(3)≧0, which confirms the conclusion of Theorem 3.2.
The investigation of positivity analysis development for discrete sequential fractional operator of mixed order was explored in this research article based on the time set Na0. In general, our results can be summarized as follows:
(1) The standardized discrete sequential operators (RLa0+1∇ν1RLa0∇ν2f)(τ) and (RLa0+2∇ν1RLa0∇ν2f)(τ) are firstly formulated in (2.6) and (2.7), respectively.
(2) The above formulations are defined on the sets D1 and D2, respectively.
(3) Based on the first formulation (2.6), the positivity of nabla is discussed in details for each τ∈Na0.
(4) Although it was difficult to examine the positivity of nabla at each time step τ∈Na0, we have found the positivity of nabla at τ=a0+3 with an extra condition (see condition (c) in Theorem 3.2) based on the formulation (2.7).
(5) We have demonstrated the accuracy and efficiency of the main results using two examples. In the first example, we have found that f(τ)=2τ−a0 is increasing (i.e. (∇f)(τ)≧0) for each τ∈Na0+1 based on Theorem 3.1. In the second example, Theorem 3.2 confirmed that f(τ)=(32)τ−a0 is increasing at τ={a0+1,a0+2,a0+3}.
This Research was supported by Taif University Researchers Supporting Project Number (TURSP2020/217), Taif University, Taif, Saudi Arabia, and the third authors would like to thank Prince Sultan University for the support through the TAS research lab.
The authors declare that they have no conflicts interests.
[1] |
J. L. G. Guirao, P. O. Mohammed, H. M. Srivastava, D. Baleanu, M. S. Abualrub, Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results, AIMS Mathematics, 7 (2022), 18127–18141. https://doi.org/10.3934/math.2022997 doi: 10.3934/math.2022997
![]() |
[2] |
C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
![]() |
[3] |
T. Abdeljawad, Different type kernel h–fractional differences and their fractional h–sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
![]() |
[4] |
P. O. Mohammed, H. M. Srivastava, D. Baleanu, K. M. Abualnaja, Modified fractional difference operators defined using Mittag-Leffler kernels, Symmetry, 14 (2022), 1519. https://doi.org/10.3390/sym14081519 doi: 10.3390/sym14081519
![]() |
[5] |
F. M. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discr. Math., 9 (2015), 139–149. http://dx.doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
![]() |
[6] |
F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inform., 151 (2017), 313–324. http://dx.doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
![]() |
[7] |
F. M. Atici, S. S. Ayan, Modeling with fractional difference equations, J. Math. Anal. Appl., 369 (2010), 1–9. http://dx.doi.org/10.1016/j.jmaa.2010.02.009 doi: 10.1016/j.jmaa.2010.02.009
![]() |
[8] |
C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
![]() |
[9] |
C. R. Chen, M. Bohner, B. G. Jia, Ulam-hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
![]() |
[10] |
R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
![]() |
[11] |
C. Lizama, The poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. http://dx.doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
![]() |
[12] |
H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
![]() |
[13] |
Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Cmput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884
![]() |
[14] | F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176. |
[15] | P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.7083 |
[16] | F. M. Atici, M. Atici, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmaco kinetics pharmaco dynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24. |
[17] |
A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049
![]() |
[18] |
R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F
![]() |
[19] |
G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. http://dx.doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
![]() |
[20] |
J. W. He, L. Zhang, Y. Zhou, B. Ahmad, Existence of solutions for fractional difference equations via topological degree methods, Adv. Differ. Equ., 2018 (2018), 153. https://doi.org/10.1186/s13662-018-1610-2 doi: 10.1186/s13662-018-1610-2
![]() |
[21] |
R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel), 102 (2014), 293–299. https://doi.org/10.1007/S00013-014-0620-X doi: 10.1007/S00013-014-0620-X
![]() |
[22] |
C. S. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. http://dx.doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
![]() |
[23] |
P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
![]() |
[24] |
P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
![]() |
[25] |
T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Soliton. Fract., 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
![]() |
[26] |
X. Liu, F. F. Du, D. R. Anderson, B. Jia, Monotonicity results for nabla fractional h-difference operators, Math. Methods Appl. Sci., 44 (2020), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823
![]() |
[27] |
R. Dahal, C. S. Goodrich, B. Lyons, Monotonicity results for sequential fractional differences of mixed orders with negative lower bound, J. Differ. Equ. Appl., 27 (2021), 1574–1593. https://doi.org/10.1080/10236198.2021.1999434 doi: 10.1080/10236198.2021.1999434
![]() |
[28] |
P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
![]() |
[29] |
C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 44 (2021), 221–229. https://doi.org/10.1515/anly-2021-0011 doi: 10.1515/anly-2021-0011
![]() |
[30] | C. S. Goodrich, Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order, Analysis, 22 (2018). https://doi.org/10.1007/S11117-017-0527-4 |
[31] |
P. O. Mohammed, C. S. Goodrich, F. K. Hamasalh, A. Kashuri, Y. S. Hamed, On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag-Leffler kernel, Math. Methods Appl. Sci., 45 (2022), 6931–6410. https://doi.org/10.1002/mma.8176 doi: 10.1002/mma.8176
![]() |
[32] | C. S. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, 2015. |
1. | Marius-F. Danca, Jagan Mohan Jonnalagadda, On the Solutions of a Class of Discrete PWC Systems Modeled with Caputo-Type Delta Fractional Difference Equations, 2023, 7, 2504-3110, 304, 10.3390/fractalfract7040304 | |
2. | Pshtiwan Othman Mohammed, Musawa Yahya Almusawa, On analysing discrete sequential operators of fractional order and their monotonicity results, 2023, 8, 2473-6988, 12872, 10.3934/math.2023649 | |
3. | Pshtiwan Othman Mohammed, Some positive results for exponential-kernel difference operators of Riemann-Liouville type, 2024, 4, 2767-8946, 133, 10.3934/mmc.2024012 | |
4. | PSHTIWAN OTHMAN MOHAMMED, DUMITRU BALEANU, EMAN AL-SARAIRAH, THABET ABDELJAWAD, NEJMEDDINE CHORFI, THEORETICAL AND NUMERICAL COMPUTATIONS OF CONVEXITY ANALYSIS FOR FRACTIONAL DIFFERENCES USING LOWER BOUNDEDNESS, 2023, 31, 0218-348X, 10.1142/S0218348X23401837 |