In this manuscript, the Korteweg-de Vries-Burgers (KdV-Burgers) partial differential equation (PDE) is investigated under nonlocal operators with the Mittag-Leffler kernel and the exponential decay kernel. For both fractional operators, the existence of the solution of the KdV-Burgers PDE is demonstrated through fixed point theorems of $ \alpha $-type $ \digamma $ contraction. The modified double Laplace transform is utilized to compute a series solution that leads to the exact values when fractional order equals unity. The effectiveness and reliability of the suggested approach are verified and confirmed by comparing the series outcomes to the exact values. Moreover, the series solution is demonstrated through graphs for a few fractional orders. Lastly, a comparison between the results of the two fractional operators is studied through numerical data and diagrams. The results show how consistently accurate the method is and how broadly applicable it is to fractional nonlinear evolution equations.
Citation: Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon. Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels[J]. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
In this manuscript, the Korteweg-de Vries-Burgers (KdV-Burgers) partial differential equation (PDE) is investigated under nonlocal operators with the Mittag-Leffler kernel and the exponential decay kernel. For both fractional operators, the existence of the solution of the KdV-Burgers PDE is demonstrated through fixed point theorems of $ \alpha $-type $ \digamma $ contraction. The modified double Laplace transform is utilized to compute a series solution that leads to the exact values when fractional order equals unity. The effectiveness and reliability of the suggested approach are verified and confirmed by comparing the series outcomes to the exact values. Moreover, the series solution is demonstrated through graphs for a few fractional orders. Lastly, a comparison between the results of the two fractional operators is studied through numerical data and diagrams. The results show how consistently accurate the method is and how broadly applicable it is to fractional nonlinear evolution equations.
[1] | R. S. Johnson, Shallow water waves on a viscous fluid–the undular bore, Phys. Fluids, 15 (1972), 1693–1699. https://doi.org/10.1063/1.1693764 doi: 10.1063/1.1693764 |
[2] | L. van Wijngaarden, On the motion of gas bubbles in a perfect fluid, Annu. Rev. Fluid Mech., 4 (1972), 369–373. https://doi.org/10.1146/annurev.fl.04.010172.002101 doi: 10.1146/annurev.fl.04.010172.002101 |
[3] | R. S. Johnson, A nonlinear equation incorporating damping and dispersion, J. Fluid Mech., 42 (1970), 49–60. https://doi.org/10.1017/S0022112070001064 doi: 10.1017/S0022112070001064 |
[4] | P. N. Hu, Collisional theory of shock and nonlinear waves in a plasma, Phys. Fluids, 15 (1972), 854–864. https://doi.org/10.1063/1.1693994 doi: 10.1063/1.1693994 |
[5] | G. Gao, A theory of interaction between dissipation and dispersion of turbulence, Sci. China Ser. A, 28 (1985), 616–627. |
[6] | S. D. Liu, S. K. Liu, KdV–Burgers equation modelling of turbulence, Sci. China Ser. A, 35 (1992), 576–586. |
[7] | D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary wave, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739 |
[8] | J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Kon. Ned. Akad. Wet., 17 (1939), 1–53. |
[9] | R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511624056 |
[10] | T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, Development and analysis of new approximation of extended cubic B-spline to the non-linear time fractional Klein-Gordon equation, Fractals, 28 (2020), 2040039. https://doi.org/10.1142/S0218348X20400393 doi: 10.1142/S0218348X20400393 |
[11] | T. Akram, M. Abbas, A. Ali, A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation, J. Math. Comput. Sci., 22 (2020), 85–96. http://doi.org/10.22436/jmcs.022.01.08 doi: 10.22436/jmcs.022.01.08 |
[12] | R. T. Alqahtani, S. Ahmad, A. Akgül, Mathematical analysis of biodegradation model under nonlocal operator in Caputo sense, Mathematics, 9 (2021), 2787. https://doi.org/10.3390/math9212787 doi: 10.3390/math9212787 |
[13] | S. Ahmad, A. Ullah, A. Akgül, D. Baleanu, On solution of fractional model of human liver under hybrid fractional derivative, Discontinuity, Nonlinearity, and Complexity, 11 (2022), 183–190. https://doi.org/10.5890/DNC.2022.03.015 doi: 10.5890/DNC.2022.03.015 |
[14] | S. Saifullah, A. Ali, M. Irfan, K. Shah, Time-fractional Klein-Gordon equation with solitary/shock waves solutions, Math. Probl. Eng., 2021 (2021), 6858592. https://doi.org/10.1155/2021/6858592 doi: 10.1155/2021/6858592 |
[15] | T. Akram, M. Abbas, A. I. Izani, An extended cubic B-spline collocation scheme for time fractional sub-diffusion equation, AIP Conference Proceedings, 2184 (2019), 060017. https://doi.org/10.1063/1.5136449 doi: 10.1063/1.5136449 |
[16] | T. Akram, M. Abbas, A. I. Izani, Numerical solution of fractional cable equation via extended cubic B-spline, AIP Conference Proceedings, 2138 (2019), 030004. https://doi.org/10.1063/1.5121041 doi: 10.1063/1.5121041 |
[17] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73–85. |
[18] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[19] | S. Ahmad, A. Ullah, M. Partohaghighi, S. Saifullah, A. Akgül, F. Jarad, Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model, AIMS Mathematics, 7 (2022), 4778–4792. https://doi.org/10.3934/math.2022265 doi: 10.3934/math.2022265 |
[20] | S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernel, AIMS Mathematics, 6 (2021), 9981–9997. https://doi.org/10.3934/math.2021580 doi: 10.3934/math.2021580 |
[21] | F. Rahman, A. Ali, S. Saifullah, Analysis of time-fractional $\Phi$ 4-equation with singular and non-singular kernels, Int. J. Appl. Comput. Math., 7 (2021), 192. https://doi.org/10.1007/s40819-021-01128-w doi: 10.1007/s40819-021-01128-w |
[22] | D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag‐Leffler law, Math. Method. Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903 |
[23] | M. Rahman, M. Arfan, W. Debani, P. Kumam, Z. Shah, Analysis of time-fractional Kawahara equation under Mittag-Leffler Power Law, Fractals, 30 (2022), 2240021. https://doi.org/10.1142/S0218348X22400217 doi: 10.1142/S0218348X22400217 |
[24] | K. A. Abro, I. Khan, K. S. Nisar, Use of Atangana–Baleanu fractional derivative in helical flow of a circular pipe, Fractals, 28 (2020), 2040049. https://doi.org/10.1142/S0218348X20400496 doi: 10.1142/S0218348X20400496 |
[25] | S. Ahmad, A. Ullah, K. Shah, A. Akgül, Computational analysis of the third order dispersive fractional PDE under exponential-decay and Mittag-Leffler type kernels, Numer. Meth. Part. Differ. Equ., in press. https://doi.org/10.1002/num.22627 |
[26] | Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21 (2008), 194–199. https://doi.org/10.1016/j.aml.2007.02.022 doi: 10.1016/j.aml.2007.02.022 |
[27] | Q. Wang, Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton. Fract., 35 (2008), 843–850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074 |
[28] | I. N. Sneddon, The use of integral transforms, McGraw Hill, 1974. |
[29] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[30] | D. Gopal, M. Abbas, D. P. Kumar, C. Vetro, Fixed points of $\alpha$-type $F$-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957–970. https://doi.org/10.1016/S0252-9602(16)30052-2 doi: 10.1016/S0252-9602(16)30052-2 |
[31] | J. Duan, New recurrence algorithms for the nonclassic Adomian polynomials, Comput. Math. Appl., 62 (2011), 2961–2977. https://doi.org/10.1016/j.camwa.2011.07.074 doi: 10.1016/j.camwa.2011.07.074 |