Research article

On a non-Newtonian fluid type equation with variable diffusion coefficient

  • Received: 03 June 2022 Revised: 19 July 2022 Accepted: 21 July 2022 Published: 03 August 2022
  • MSC : 35B35, 35K20, 35K55

  • Since the non-Newtonian fluid type equations arise from a broad and in-depth background, many research achievements have been gained from 1980s. Different from the usual non-Newtonian fluid equation, there is a nonnegative variable diffusion in the equations considered in this paper. Such a variable diffusion reflects the characteristic of the medium which may not be homogenous. By giving a generalization of the Gronwall inequality, the stability and the uniqueness of weak solutions to the non-Newtonian fluid equation with variable diffusion are studied. Since the variable diffusion may be degenerate on the boundary $ \partial \Omega $, it is found that a partial boundary value condition imposed on a submanifold of $ \partial\Omega\times (0, T) $ is enough to ensure the well-posedness of weak solutions. The novelty is that the concept of the trace of $ u(x, t) $ is generalized by a special way.

    Citation: Huashui Zhan, Yuan Zhi, Xiaohua Niu. On a non-Newtonian fluid type equation with variable diffusion coefficient[J]. AIMS Mathematics, 2022, 7(10): 17747-17766. doi: 10.3934/math.2022977

    Related Papers:

  • Since the non-Newtonian fluid type equations arise from a broad and in-depth background, many research achievements have been gained from 1980s. Different from the usual non-Newtonian fluid equation, there is a nonnegative variable diffusion in the equations considered in this paper. Such a variable diffusion reflects the characteristic of the medium which may not be homogenous. By giving a generalization of the Gronwall inequality, the stability and the uniqueness of weak solutions to the non-Newtonian fluid equation with variable diffusion are studied. Since the variable diffusion may be degenerate on the boundary $ \partial \Omega $, it is found that a partial boundary value condition imposed on a submanifold of $ \partial\Omega\times (0, T) $ is enough to ensure the well-posedness of weak solutions. The novelty is that the concept of the trace of $ u(x, t) $ is generalized by a special way.



    加载中


    [1] G. Akagi, Local existence of solutions to some degenerate parabolic equation associated with the $p$-Laplacian, J. Differ. Equ., 241 (2007), 359–385. https://doi.org/10.1016/j.jde.2007.05.009 doi: 10.1016/j.jde.2007.05.009
    [2] G. Rosen, The mathematical theory of diffusion and reaction in permeable catalysts, Bull. Math. Biol., 38 (1976), 95–96. https://doi.org/10.1007/BF02459545 doi: 10.1007/BF02459545
    [3] S. J. Chapman, G. Ridhardson, Vortex pining by inhomogeneities in type-Ⅱ superconductors, Physica D, 108 (1997), 397–407. https://doi.org/10.1016/S0167-2789(97)00053-5 doi: 10.1016/S0167-2789(97)00053-5
    [4] E. DiBenedetto, Degenerate parabolic equations, New York: Spring-Verlag, 1993. https://doi.org/10.1007/978-1-4612-0895-2
    [5] R. Dautray, J. L. Lions, Mathematical analysis and numerical methods for science and technology, Volume Ⅰ: Physical origins and classical methods, Berlin: Springer-Verlag, 1985.
    [6] J. Droniou, R. Eymard, K. S. Talbot, Convergence in $C([0, T ]; L^2(\Omega))$ of weak solutions to perturbed doubly degenerate parabolic equations, J. Differ. Equ., 260 (2016), 7821–7860. https://doi.org/10.1016/j.jde.2016.02.004 doi: 10.1016/j.jde.2016.02.004
    [7] D. Eidus, S. Kamin, The fifiltration equation in a class of functions decreasing at infifinity, Proc. Amer. Math. Soc., 120 (1994), 825–830. https://doi.org/10.1090/S0002-9939-1994-1169025-2 doi: 10.1090/S0002-9939-1994-1169025-2
    [8] Y. Gaididei, N. Lazarides, N.Flytzanis, Fluxons in a superlattice of Josephson junctions: Dynamics and radiation, J. Phys. A: Math. Gen., 36 (2003), 2423–2441. https://doi.org/10.1088/0305-4470/36/10/304 doi: 10.1088/0305-4470/36/10/304
    [9] Y. Gaididei, N. Lazarides, N. Flytzanis, Static flfluxons in a superlattice of Josephson junctions, J. Phys. A: Math. Gen., 35 (2002), 10409–10427. https://doi.org/10.1088/0305-4470/35/48/313 doi: 10.1088/0305-4470/35/48/313
    [10] R. Gianni, A. Tedeev, V. Vespri, Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic c equations with measurable coefficients, Nonlinear Anal., 138 (2016), 111–126. https://doi.org/10.1016/j.na.2015.09.006 doi: 10.1016/j.na.2015.09.006
    [11] L. Gu, Second order parabolic partial differential equations (in Chinese), Xiamen University Press, Xiamen, 2002.
    [12] J. K. Hale, C. Rocha, Interaction of diffusion and boundary conditions, Nonlinear Anal.-Theor., 11 (1987), 633–649. https://doi.org/10.1016/0362-546X(87)90078-2 doi: 10.1016/0362-546X(87)90078-2
    [13] J. K. Hale, G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures Appl., 71 (1992), 33–95.
    [14] S. Jimbo, Y. Morita, Stable vortex solutions to the Ginzburg-Landau equation with a variable coefficient in a disk, J. Differ. Equ., 155 (1999), 153–176. https://doi.org/10.1006/jdeq.1998.3580 doi: 10.1006/jdeq.1998.3580
    [15] H. Y. Jian, B. H. Song, Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors, J. Differ. Equ., 170 (2001), 123–141. https://doi.org/10.1006/jdeq.2000.3822 doi: 10.1006/jdeq.2000.3822
    [16] S. Kamin, P. Rosenau, Propagation of thermal waves in an inhomogeneous medium, Commun. Pure Appl. Math., 34 (1981), 831–852. https://doi.org/10.1002/cpa.3160340605 doi: 10.1002/cpa.3160340605
    [17] S. Kamin, P. Rosenau, Nonlinear thermal evolution in an inhomogeneous medium, J. Math. Phys., 23 (1982), 1385. https://doi.org/10.1063/1.525506 doi: 10.1063/1.525506
    [18] N. I. Karachalios, N. B. Zographopoulos, On the dynamics of a degenerate parabolic equation: global bifurcation of stationary states and convergence, Cala. Var. Partial Differ. Equ., 25 (2006), 361–393. https://doi.org/10.1007/s00526-005-0347-4 doi: 10.1007/s00526-005-0347-4
    [19] K. Lee, A. Petrosyan, J. L. Vazquez, Large time geometric properties of solutions of the evolution $p-$Laplacian equation, J. Differ. Equ., 229 (2006), 389–411. https://doi.org/10.1016/j.jde.2005.07.028 doi: 10.1016/j.jde.2005.07.028
    [20] G. F. Lu, Nonlinear degenerate parabolic equations in infiltration through a porous medium, Commun. Nonlinear Sci., 3 (1998), 97–100. https://doi.org/10.1016/S1007-5704(98)90071-5 doi: 10.1016/S1007-5704(98)90071-5
    [21] J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, New York: Springer-Verlag, 2003. https://doi.org/10.1007/b98869
    [22] M. B. Riaz, M. A. Imran, K. Shabbir, Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple, Alex. Eng. J., 55 (2016), 3267–3275. https://doi.org/10.1016/j.aej.2016.07.032 doi: 10.1016/j.aej.2016.07.032
    [23] H. F. Shang, J. X. Cheng, Cauchy problem for doubly degenerate parabolic equation with gradient source, Nonlinear Anal.-Theor, 113 (2015), 323–338. https://doi.org/10.1016/j.na.2014.10.006 doi: 10.1016/j.na.2014.10.006
    [24] C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation: Self-focusing and wave collapse, New York: Springer, 1999.
    [25] F. Z. Wang, M. I. Asjad, M. Zahid, A. Iqbal, H. Ahmad, M. D. Alsulami, Unsteady thermal transport flow of Casson nanofluids with generalized Mittage-Lefflfler kernel of Prabhakar's type, J. Mater. Res. Technol., 14 (2021), 1292–1300. https://doi.org/10.1016/j.jmrt.2021.07.029 doi: 10.1016/j.jmrt.2021.07.029
    [26] Z. Q. Wu, J. N. Zhao, The first boundary value problem for quasilinear degenerate parabolic equations of second order in several variables, Chinese Anal. Math., 1 (1983), 319–358.
    [27] Z. Q. Wu, J. X. Zhao, J. Yun, F. H. Li, Nonlinear diffusion equations, World Scientific Publishing Company, 2001. https://doi.org/10.1142/4782
    [28] J. X. Yin, C. P. Wang, Evolutionary weighted $p-$Laplacian with boundary degeneracy, J. Differ. Equ., 237 (2007), 421–445. https://doi.org/10.1016/j.jde.2007.03.012 doi: 10.1016/j.jde.2007.03.012
    [29] H. S. Zhan, Infiltration equation with degeneracy on the boundary, Acta. Appl. Math., 153 (2018), 147–161. https://doi.org/10.1007/s10440-017-0124-3 doi: 10.1007/s10440-017-0124-3
    [30] H. S. Zhan, The uniqueness of the solution to the diffusion equation with a damping term, Appl. Anal., 9 (2019), 1333–1346. https://doi.org/10.1080/00036811.2017.1422725 doi: 10.1080/00036811.2017.1422725
    [31] H. S. Zhan, Z. S. Feng, Degenerate non-Newtonian fluid equation on the half space, Dyn. Partial Differ. Equ., 15 (2018), 215–233.
    [32] H. S. Zhan, Z. S. Feng, Optimal partial boundary condition for degenerate parabolic equations, J. Differ. Equ., 284 (2021), 156–182. https://doi.org/10.1016/j.jde.2021.02.053 doi: 10.1016/j.jde.2021.02.053
    [33] H. S. Zhan, Z. S. Feng, The local stablity of a Kolmogorov equation in financial mathematics, 2022. Preprint.
    [34] J. N. Zhao, Existence and nonexistence of solutions for $u_t-div(|\triangledown u|^{p-2}\nabla u) = f(\nabla u, u, x, t)$, J. Math. Anal. Appl., 172 (1993), 130–146. https://doi.org/10.1006/jmaa.1993.1012 doi: 10.1006/jmaa.1993.1012
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(919) PDF downloads(93) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog