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Abstract: Since the non-Newtonian fluid type equations arise from a broad and in-depth background,
many research achievements have been gained from 1980s. Different from the usual non-Newtonian
fluid equation, there is a nonnegative variable diffusion in the equations considered in this paper. Such
a variable diffusion reflects the characteristic of the medium which may not be homogenous. By giving
a generalization of the Gronwall inequality, the stability and the uniqueness of weak solutions to the
non-Newtonian fluid equation with variable diffusion are studied. Since the variable diffusion may
be degenerate on the boundary ∂Ω, it is found that a partial boundary value condition imposed on a
submanifold of ∂Ω × (0,T ) is enough to ensure the well-posedness of weak solutions. The novelty is
that the concept of the trace of u(x, t) is generalized by a special way.
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1. Introduction

The mathematical modelling of various physical processes, where spatial heterogeneity has a
primary role, usually results in the derivation of nonlinear evolution equations with variable diffusion,
or dispersion. As pointed out by Karachalios-Zographopoulos in [18], to name but a few, equations of
such a type have been successfully applied to the heat propagation in heterogeneous
materials [5, 12, 16, 17], the study of transport of electron temperature in a confined plasma [7], the
propagation of varying amplitude waves in a nonlinear medium [24], the study of electromagnetic
phenomena in nonhomogeneous superconductors [3, 13–15] and the dynamics of Josephson
junctions [8, 9], the epidemiology and the growth and control of brain tumors [21]. It is not possible
that all the characteristics of these applications explained in one equation due to its adaptability. In
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this paper, we focus on the non-Newtonian fluids equations. Applications of non-Newtonian fluids in
wide range in many fields like fiber coating and crude oil extraction and many more have fascinated
many researchers, one can refer to [22, 25] etc. In Newtonian fluids, the viscosity does not change,
while in non-Newtonian fluids, the viscosity changes when under force/stress to either more liquid or
more solid, and so the non-Newtonian fluids are fluids that describe the relationship between
deformation rates and stress none linearly, and they do not follow Newton’s law of viscosity.

Let us give three explicit equations derived from Newtonian flow or non-Newtonian flow. The first
one is in the study of water infiltration through porous media, Darcy’s linear relation

V = −K(θ)∇φ, (1.1)

satisfactorily describes the flow conduction provided that the velocities are small. Here V represents
the seepage velocity of water, θ is the volumetric moisture content, K(θ) is the hydraulic conductivity
and φ is the total potential, which can be expressed as the sum of a hydrostatic potential ψ(θ) and a
gravitational potential z

φ = ψ(θ) + z.

If it is assumed that infiltration takes place in a horizontal column of the medium, then the continuity
equation has the form

∂θ

∂t
+
∂V
∂x

= 0.

Then we have
∂θ

∂t
=

∂

∂x
(D(θ)|θx|θx), (1.2)

with D(θ) = K(θ)ψ′(θ). Certainly, water is the most usual Newtonian fluid. Also, Eq (1.5) is called as
a porous medium equation.

The second one is to consider a compressible fluid flow in a homogeneous isotropic rigid porous
medium. Then the volumetric moisture content θ, the seepage velocity ~V and the density of the fluid
are governed by the continuity equation

θ
∂ρ

∂t
+ div(ρ~V) = 0. (1.3)

For non-Newtonian fluid, according to Chapter 2 of [27], the linear Darcy’s law is not longer valid,
because the influence of many factors such as the molecular and ion effects needs to be concerned.
Instead, one has the following nonlinear relation

ρ~V = −λ|∇P|α−1∇P, (1.4)

where ρ~V and P denote the momentum velocity and pressure respectively, λ > 0 and α > 0 are some
physical constants. Combing (1.3) with (1.4), one has

θ
∂ρ

∂t
− λdiv(|∇P|α−1∇P) = 0. (1.5)

The third one is to consider the flows in fractured media [20]. Let ε be the size ratio of the matrix
blocks to the whole medium and let the width of the fracture planes and the porous block diameter be
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in the same order. If the permeability ratio of matrix blocks to fracture planes is of order εpε , where pε
is a positive oscillating constant, then the nonlinear Darcy law combined with the continuity equation
leads to the following equation

ωεuεt − div(kε(x)|∇uε|p
ε−2
∇uε) = 0, (1.6)

where uε is the density of the fluid, ωε, kε are the porosity and the permeability of the medium.
Equations (1.4)–(1.6) can be abstracted as

∂u
∂t
− div

(
a(x)|∇u|p−2∇u

)
= 0, (1.7)

and the quantity p > 1 is a characteristic of the medium, the media with p > 2 are called dilatant fluids
and those with p < 2 are called pseudoplastics; if p = 2 they are Newtonian fluids. While a(x) is only a
nonnegative function, it reflects the characteristic of the medium which may not be homogenous. The
most achievements before are focused on the case a(x) = 1,

∂u
∂t
− div

(
|∇u|p−2∇u

)
= 0 (1.8)

which is simply called as the Non-Newtonian fluid equation usually. The existence, the uniqueness,
the regularity and the long-time behaviors of weak solutions to this equation have been studied in
[1, 2, 4, 19, 27, 34] etc.

In this paper, we consider the following non-Newtonian fluid type equation with a variable,
nonnegative diffusion coefficient a(x):

∂u
∂t
− div

(
a(x)|∇u|p−2∇u

)
−

N∑
i=1

bi(x, t)Diu = f (u, x, t), (x, t) ∈ QT = Ω × (0,T ), (1.9)

where Di = ∂
∂xi

, 0 ≤ a(x) ∈ C(Ω), bi(x, t) ∈ C1(QT ), and f (u, x, t) ∈ C1(R × QT ), Ω ⊂ RN is a
bounded domain with a smooth boundary ∂Ω. The most difference between Eq (1.9) and (1.8) is that
the diffusion a(x) in Eq (1.9) may degenerate at some points of Ω.

A special case of (1.9) is that bi(x, t) = bi(x) and a(x) ∈ C1(Ω) satisfies

a(x)|x∈Ω > 0 and a(x)|x∈∂Ω = 0. (1.10)

In this case, the corresponding well-posed problem has been considered in [28, 31, 32] recently. In
general, the initial value condition

u(x, 0) = u0(x), x ∈ Ω, (1.11)

is always needed, but instead of the usual boundary value condition

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ),

only a partial boundary value condition

u(x, t) = 0, (x, t) ∈ Σp ⊆ ∂Ω × (0,T ), (1.12)
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is imposed, where Σp = Σ1 × (0,T ) and Σ1 is a relatively open subset of ∂Ω in [28], even it can be an
empty set sometime in [29–31]. In this paper, different [6, 10, 23, 28–31], since bi(x, t) depends on the
time variable t, we find that Σp can not be expressed as a cylindrical space as Σ1 × (0,T ). Instead, the
partial boundary value condition is only imposed on a submanifold of Σp ⊆ ∂Ω× (0,T ) (the details are
given in (1.16) or (3.2) below).

Now, let us give the definition of weak solution and supply some other related backgrounds.
Definition 1.1. A function u(x, t) is said to be a weak solution of the initial-boundary value problem of
Eq (1.9), if

u ∈ L∞(QT ), ut ∈ L2(QT ), a(x)|∇u|p ∈ L1(QT ), (1.13)

and for any function g(s) ∈ C1(R) with g(0) = 0, ϕ1 ∈ C1
0(Ω) and ϕ2 ∈ L∞(0,T ; W1,p

loc (Ω)), there holds"
QT

[
utg(ϕ1ϕ2) + a(x) |∇u|p−2

∇u · ∇g(ϕ1ϕ2)
]

dxdt

+

N∑
i=1

"
QT

u
[
bixi(x, t)g(ϕ1ϕ2) + bi(x, t)gxi(ϕ1ϕ2)

]
dxdt

=

"
QT

f (u, x, t)g(ϕ1ϕ2)dxdt.

(1.14)

The initial value condition is satisfied in the sense of

lim
t→0

∫
Ω

|u(x, t) − u0(x)|dx = 0. (1.15)

Moreover, the partial boundary value condition is imposed as

u(x, t) = 0, (x, t) ∈ Σ =

∂Ω × (0,T ) :
N∑

i=1

bi(x, t)axi(x) < 0

 . (1.16)

If bi(x, t) = bi(x), f (u, x, t) = f (x, t) − c(x, t)u, the existence of weak solution has been proved
in [28]. In addition, if there is ∫

Ω

a(x)−
1

p−1 dx < ∞, (1.17)

then for a weak solution of Eq (1.9), we have∫
Ω

|∇u|dx < ∞, (1.18)

and the trace of u(x, t) on the boundary ∂Ω can be defined in the classical sense [28,29]. If the inequality
(1.17) is true and bi(x, t) = bi(x), then a similar partial boundary value condition as (1.16) has been
imposed in [28]. In this paper, we mainly consider the case of that the inequality (1.17) is not true, i.e.,∫

Ω

a(x)−
1

p−1 dx = ∞, (1.19)
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then we can not define the trace of u(x, t) in the classical sense. So, the first dedication of this paper lies
in that we give a generalization of the trace of u(x, t) on the boundary ∂Ω in a special way. In details,
inspired by [28, 32], we can define the trace of u(x, t) on the boundary ∂Ω as

ess sup lim
ε→0

1
ε

∫
(Ωε\Ω2ε)∩Ω1t

u2
N∑

i=1

bi(x, t)axi(x)dx = 0, (1.20)

where

Ωε = {x ∈ Ω : a(x) > ε}, Ω1t =

x ∈ Ω :
N∑

i=1

bi(x, t)axi(x) ≤ 0

 ,
and

ess sup lim
λ→0

f (λ) = inf
δ>0
{ess sup{ f (λ) : |λ| < δ}}

is the super limit. In what follows, we only simply denote ess sup lim
λ→0

f (λ) as lim
λ→0

f (λ). The rationality
of such a generalization of the classical trace will be specified later in this paper.

If f (u, x, t) is a continuous function and is Lipchitz continuous about the variable u, then the
existence of weak solutions of the initial-boundary value problem of Eq (1.9) can be proved in a
similar way as those [28, 32], we don’t prepare to prove the existence of weak solutions again. We
mainly pay attention to the stability or the uniqueness of weak solutions by a generalized Gronwall
inequality.
Theorem 1.2. Let u(x, t) and v(x, t) be two weak solutions of the initial-boundary value problem of
Eq (1.9), and with the same homogeneous the partial boundary condition

u(x, t) = 0 = v(x, t), (x, t) ∈ Σ.

Here Σ has the form (1.16). If 2 > p > 1, a(x) satisfies (1.10), and

∫
Ω

a(x)−
2

p−1

∣∣∣∣∣∣∣
N∑

i=1

bi(x, t)

∣∣∣∣∣∣∣
2p
p−1

dx < ∞, t ∈ [0,T ], (1.21)

then ∫
Ω

|u(x, t) − v(x, t)|2dx ≤ c
∫

Ω

|u0(x) − v0(x)|2dx, t ∈ [0,T ). (1.22)

Moreover, we can obtain a local stability of weak solutions as follows.
Theorem 1.3. Let u(x, t) and v(x, t) be two solutions of Eq (1.9) with the differential initial values u0(x)
and v0(x) respectively, but no any boundary value condition is required. if p > 1, a(x) satisfies (1.10),
whether (1.17) or (1.19) is true, and∫

Ω

∣∣∣∑N
i=1 axi(x)bi(x, t)

∣∣∣2
a(x)

dx ≤ c, t ∈ [0,T ], (1.23)

then ∫
Ω

a(x)|u(x, t) − v(x, t)|2dx ≤ c
∫

Ω

a(x)|u0(x) − v0(x)|2dx, t ∈ [0,T ). (1.24)
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Different from Theorem 1.2, in this theorem, there is not any boundary value condition imposed.
Actually, the uniqueness of weak solution to Eq (1.9) can be obtained without conditions (1.21)
and (1.23).
Theorem 1.4. Let a(x) ≥ 0 satisfy (1.10), p > 1, u(x, t) and v(x, t) be two weak solutions of Eq (1.9)
with the initial values u0(x) = v0(x). If a(x) satisfies (1.10) and one of the following assumptions is
true.

i) a(x) satisfies (1.17), u(x, t) and v(x, t) are with the same partial boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ Σ = {(x, t) ∈ ∂Ω × (0,T ) : div(~b(x, t)) , 0}, (1.25)

in the sense of the classical trace. Here ~b = {bi}, div(~b(x, t)) =
∑N

i=1
∂bi(x,t)
∂xi

.
ii) Whether a(x) satisfies (1.17) or (1.19), but

div(~b(x, t)) = 0, (x, t) ∈ ∂Ω × (0,T ). (1.26)

Then
u(x, t) = v(x, t), (x, t) ∈ QT . (1.27)

One can see that all theorems above admit the case of (1.19), so the generalization of classical trace
to the general form (1.20) is the most novelty of this paper. One can refer to the appendix for more
details. Certainly, some other restrictions on the convective coefficient bi(x, t), i.e., the inequalities
(1.21), (1.23) and (3.1), are imposed. How to relieve these restrictions to obtain the same conclusions?
This is a question worth discussing thoroughly.

2. The generalized Gronwall inequality

Let us review the classical Gronwall inequality.
Gronwall inequality: Let x(t) and c(t) be two nonnegative integral functions and a(t) be a bounded
function on [0,T ]. If

x(t) ≤
∫ t

0
c(τ)x(τ)dτ + a(t), t ∈ [0,T ], (2.1)

then
x(t) ≤ sup

0≤t≤T
|a(t)|e

∫ t
0 c(τ)dτ. (2.2)

It is well-known that there are many applications of the Gronwall inequality in PDE, one can refer
to [11,27] etc. In this paper, we find a generalization of the Gronwall inequality, and use it to prove the
stability theorems of the degenerate parabolic equation (1.9).
Lemma 2.1. Let x(t) and c(t) be two nonnegative integral functions on t ∈ [0,T ], a(t) be a bounded
function. If there is a constant 0 < l ≤ 1 such that

x(t) ≤
(∫ t

0
c(τ)x(τ)dτ

)l

+ a(t), (2.3)

then
x(t) ≤ sup

0≤t≤T
|a(t)|ec

∫ τ
0 c(τ)dτ, (2.4)

where c is a constant depending on
∫ T

0
x(τ)dτ.
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Proof. If l = 1, there is nothing to be proved. When l < 1, by (2.3), using the Young inequality, we
have

x(t) ≤
(∫ t

0
c(τ)x(τ)dτ

)l

+ a(t)

≤l
∫ t

0
c(τ)x(τ)dτ + 1 − l + a(t).

By (2.1) and (2.2), we have (2.4). �

3. The proofs of theorems

For small η > 0, let

S η(s) =

∫ s

0
hη(τ)dτ, hη(s) =

2
η

(
1 −
| s |
η

)
+

.

Obviously, hη(s) ∈ C(R), and

lim
η→0

S η(s) = sgns, lim
η→0

shη(s) = 0. (3.1)

Proof of Theorem 1.2. From the definition of weak solution, if g(s) = s, for any ϕ1 ∈ C1
0(Ω) and

ϕ2 ∈ L∞
(
0,T ; W1,p

loc (Ω)
)

we have

"
QT

ϕ1ϕ2
∂(u − v)
∂t

dxdt

= −

"
QT

a(x)
(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇(ϕ1ϕ2)dxdt

−

N∑
i=1

"
QT

(u − v)
[
bixi(x, t)ϕ1ϕ2 + bi(x, t)(ϕ1ϕ2)xi

]
dxdt

+

"
QT

[ f (u, x, t) − v(v, x, t)]ϕ1ϕ2dxdt.

(3.2)

Denote Ωε = {x ∈ Ω : a(x) > ε}. Let ξ be

ξε(x) =


1, if x ∈ Ω2ε,

1
ε
[a(x) − ε], if x ∈ Ωε \Ω2ε,

0, if x ∈ Ω \Ωε.

By a process of limit, we can choose

ϕ1 = ξε and ϕ2 = χ[τ,s](u − v)

AIMS Mathematics Volume 7, Issue 10, 17747–17766.



17754

in (3.2), where, χ[τ,s] is the characteristic function on [τ, s] ⊂ (0,T ). Then

1
2

∫
Ω

[u(x, s) − v(x, s]2ξεdx

=
1
2

∫
Ω

[u(x, τ) − v(x, τ)]2ξεdx

−

"
Qτs

ξεa(x)
(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇(u − v)dxdt

−

"
Qτs

(u − v)a(x)
(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇ξεdxdt

−

N∑
i=1

"
Qτs

(u − v)
{
bixi(x, t)(u − v)ξε + bi(x, t)[(u − v)ξε]xi

}
dxdt

+

"
Qτs

[ f (u, x, t) − f (v, x, t)](u − v)ξεdxdt,

(3.3)

where Qτs = Ω × [τ, s].
A straightforward calculation leads to

∣∣∣∣∣∣−
"

Qτs

(u − v)a(x)(|∇u|p−2∇u − |∇v|p−2∇v)∇ξεdxdt

∣∣∣∣∣∣
≤

"
Qτs

|u − v|a(x)
(
|∇u|p−1 + |∇v|p−1

)
|∇ξε|dxdt

≤c
∫ s

τ

∫
Ωε\Ω2ε

[
p − 1

p
a(x) (|∇u|p + |∇v|p) +

1
p

a(x)|∇ξε|p
]

dxdt

≤c
∫ s

τ

∫
Ωε\Ω2ε

[
p − 1

p
a(x) (|∇u|p + |∇v|p) +

1
p

a(x)ε−p

]
dxdt.

(3.4)

Since 1 < p < 2, we have

lim
ε→0

∫
Ωε\Ω2ε

a(x)ε−pdx

= lim
ε→0

1
ε

∫
Ωε\Ω2ε

a(x)ε−(p−1)dx

≤ lim
ε→0

2
ε

∫
Ωε\Ω2ε

a(x)2−pdx

=2
∫
∂Ω

a(x)2−pdΣ

=0.

By this inequality, one can see that the right-hand side of (3.4) tends to 0 as ε→ 0.

AIMS Mathematics Volume 7, Issue 10, 17747–17766.



17755

Noticing that

N∑
i=1

"
Qτs

(u − v)
{
bixi(x, t)(u − v)ξε + bi(x, t)[(u − v)ξε]xi

}
dxdt

=

N∑
i=1

"
Qτs

(u − v)2bixi(x, t)ξεdxdt

+

N∑
i=1

"
Qτs

(u − v)2bi(x, t)ξεxidxdt +

N∑
i=1

"
Qτs

(u − v)bi(x, t)ξε(u − v)xidxdt,

(3.5)

if denoting

Ω1t =

x ∈ Ω :
N∑

i=1

bi(x, t)axi(x) ≤ 0

 and Ω2t =

x ∈ Ω :
N∑

i=1

bi(x, t)axi(x) > 0

 ,
by the partial boundary value condition (1.16), we have

− lim
ε→0

∫ s

τ

∫
Ω

(u − v)2
N∑

i=1

bi(x, t)ξεxidxdt

= −

∫ s

τ

lim
ε→0

1
ε

∫
Ωε\Ω2ε

(u − v)2
N∑

i=1

bi(x, t)axi(x)dxdt

≤ −

∫ s

τ

lim
ε→0

1
ε

∫
(Ωε\Ω2ε)∩Ω1t

(u − v)2
N∑

i=1

bi(x, t)axi(x)dxdt

= −

∫ s

τ

∫
Σp

(u − v)2
N∑

i=1

bi(x, t)axi(x)dΣdt

= 0.

(3.6)
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Meanwhile, since 1 < p < 2, we have p
p−1 > 2. Due to that u(x, t), v(x, t) ∈ L∞(QT ), by (1.17), we

have ∣∣∣∣∣∣∣
∫

Ω

(u − v)
N∑

i=1

bi(x, t)ξε(u − v)xidx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Ω

(u − v)
N∑

i=1

bi(x, t)ξεa(x)−
1
p a(x)

1
p (u − v)xidx

∣∣∣∣∣∣∣
≤


∫

Ω

∣∣∣∣∣∣∣(u − v)
N∑

i=1

bi(x, t)a(x)−
1
p

∣∣∣∣∣∣∣
p

p−1

dx


p−1

p (∫
Ω

a(x) (|∇u|p + |∇v|p) dx
) 1

p

≤c


∫

Ω

∣∣∣∣∣∣∣(u − v)
N∑

i=1

bi(x, t)a(x)−
1
p

∣∣∣∣∣∣∣
p

p−1

dx


p−1

p

=c


∫

Ω

|u − v||u − v|
p

p−1−1

∣∣∣∣∣∣∣
N∑

i=1

bi(x, t)a(x)−
1
p

∣∣∣∣∣∣∣
p

p−1

dx


p−1

p

≤c


∫

Ω

|u − v|

∣∣∣∣∣∣∣
N∑

i=1

bi(x, t)a(x)−
1
p

∣∣∣∣∣∣∣
p

p−1

dx


p−1

p

≤c
(∫

Ω

|u − v|2dx
) p−1

2p


∫

Ω

∣∣∣∣∣∣∣
N∑

i=1

bi(x, t)a(x)−
1
p

∣∣∣∣∣∣∣
2p
p−1

dx


p−1
2p

≤c
(∫

Ω

|u − v|2dx
) p−1

2p

.

(3.7)

Naturally, we have

−

"
Qτs

ξεa(x)
(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇(u − v)dxdt ≤ 0. (3.8)

Since u(x, t), v(x, t) ∈ L∞(QT ) and f (u, x, t) ∈ C1(R × QT ), by (3.4), (3.6)–(3.8), from (3.3), we easily
obtain ∫

Ω

[u(x, s) − v(x, s)]2dx ≤
∫

Ω

[u(x, τ) − v(x, τ)]2dx + c
(∫ s

τ

∫
Ω

|u(x, t) − v(x, t)|2dxdt
)l

,

where l ≤ 1.
By virtue of the generalized Gronwall Lemma 2.1, choosing x(s) =

∫
Ω

[u(x, s)− v(x, s)]2dx, we have∫
Ω

[u(x, s) − v(x, s)]2dx ≤ c(T )
∫

Ω

[u(x, τ) − v(x, τ)]2dx,

and letting τ→ 0, we arrive at the desire. �
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Proof of Theorem 1.3. Let u(x, t) and v(x, t) be two solutions of Eq (1.9) with the initial values u0(x)
and v0(x) respectively, but without any boundary value condition. From the definition of the weak
solution, we can choose χ[τ,s]a(x)(u − v) as a test function, where χ[τ,s] is the characteristic function on
[τ, s] ⊂ [0,T ). Denoting Qτs = Ω × [τ, s], then we have"

Qτs

a(x)(u − v)
∂(u − v)
∂t

dxdt

= −

"
Qτs

a(x)(|∇u|p−2∇u − |∇v|p−2∇v)∇[a(x)(u − v)]dxdt

−

N∑
i=1

"
Qτs

(u − v)[bixi(x, t)a(x)(u − v) + bi(x, t)(a(x)(u − v))xi]dxdt

+

"
Qτs

[ f (u, x, t) − f (v, x, t)]a(x)(u − v)dxdt.

(3.9)

In particular, "
Qτs

a(x)(|∇u|p−2∇u − |∇v|p−2∇v)∇[a(x)(u − v)]dxdt

=

"
Qτs

a(x)2(|∇u|p−2∇u − |∇v|p−2∇v)∇(u − v)dxdt

+

"
Qτs

a(x)(|∇u|p−2∇u − |∇v|p−2∇v)(u − v)∇adxdt.

(3.10)

Clearly, "
Qτs

a(x)2(|∇u|p−2∇u − |∇v|p−2∇v)∇(u − v)dxdt ≥ 0. (3.11)

For the second term on the right hand side of (3.10), we have∣∣∣∣∣∣
"

Qτs

(u − v)a(x)(|∇u|p−2∇u − |∇v|p−2∇v)∇adxdt

∣∣∣∣∣∣
≤

"
Qτs

|u − v|a(x)(|∇u|p−1 + |∇v|p−1)|∇a|dxdt

≤c
(∫ s

τ

∫
Ω

a(x)(|∇u|p + |∇v|p)dxdt
) p−1

p

·

(∫ s

τ

∫
Ω

a(x)|∇a|p|u − v|pdxdt
) 1

p

≤c
(∫ s

τ

∫
Ω

a(x)|∇a|p|u − v|pdxdt
) 1

p

≤c
(∫ s

τ

∫
Ω

a(x)|u − v|pdxdt
) 1

p

.

(3.12)

If p ≥ 2, (∫ s

τ

∫
Ω

a(x)|u − v|pdxdt
) 1

p

≤ c
(∫ s

τ

∫
Ω

a(x)|u − v|2dxdt
) 1

p

. (3.13)
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If 1 < p < 2, by then the Hölder inequality

(∫ s

τ

∫
Ω

a(x)|u − v|pdxdt
) 1

p

≤ c
(∫ s

τ

∫
Ω

a(x)|u − v|2dxdt
) 1

2

. (3.14)

Meanwhile, by (1.23), ∫
Ω

∣∣∣∑N
i=1 axi(x)bi(x, t)

∣∣∣2
a(x)

dx ≤ c(T ),

since u(x, t), v(x, t) ∈ L∞(QT ), we easily get that∣∣∣∣∣∣∣
"

Qτs

N∑
i=1

bi(x, t)(u − v)[(u − v)a]xidxdt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
"

Qτs

N∑
i=1

bi(x, t)(u − v)2axidxdt +

"
Qτs

N∑
i=1

bi(x, t)(u − v)(u − v)xia(x)dxdt

∣∣∣∣∣∣∣
≤c

∫ s

τ

∫
Ω

|u − v|

∣∣∣∣∣∣∣
N∑

i=1

axibi(x, t)

∣∣∣∣∣∣∣ dx

+

∫ s

τ

∫
Ω

a(− 1
p )p′(a(x)

N∑
i=1

bi(x, t)|u − v|)p′dxdt


1
p′

·

(∫ s

τ

∫
Ω

a(x)(|∇u|p + |∇v|p)dxdt
) 1

p

≤c

∫ s

τ

∫
Ω

∣∣∣∣∣∣
∑N

i=1 axibi(x, t)
√

a(x)

∣∣∣∣∣∣
2

dxdt


1
2 (∫ s

τ

∫
Ω

a(x)|u − v|2dxdt
) 1

2

+ c


∫ s

τ

∫
Ω

∣∣∣∣∣∣∣
N∑

i=1

bi(x, t)

∣∣∣∣∣∣∣
p

p−1

dxdt


1
p′ (∫ s

τ

∫
Ω

a(x)(|∇u|p + |∇v|p)dxdt
) 1

p

≤c
(∫ s

τ

∫
Ω

a(x)|u − v|2dxdt
) 1

2

+ c
(∫ s

τ

∫
Ω

a(x)|u − v|p
′

dxdt
) 1

p′

.

(3.15)

Here, p′ =
p

p−1 as usual.
At the same time, we have"

Qτs

∣∣∣∣∣∣∣
N∑

i=1

bixi(x, t)(u − v)2

∣∣∣∣∣∣∣ a(x)dxdt ≤ c
(∫ s

τ

∫
Ω

a(x)|u − v|2dxdt
) 1

2

, (3.16)

and since | f (u, x, t) − f (v, x, t)| ≤ c, by that u(x, t), v(x, t) ∈ L∞(QT ), using the Hölder inequality, we
have "

Qτs

|[ f (u, x, t) − f (v, x, t)](u − v)|a(x)dxdt ≤ c
(∫ s

τ

∫
Ω

a(x)|u − v|2dxdt
) 1

2

. (3.17)
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Also, "
Qτs

(u − v)a(x)
∂(u − v)
∂t

dxdt

=

∫
Ω

a(x)[u(x, s) − v(x, s)]2dx −
∫

Ω

a(x)[u(x, τ) − v(x, τ)]2dx.
(3.18)

At last, by (3.10)–(3.18), we let λ→ 0 in (3.9). Then∫
Ω

a(x)[u(x, s) − v(x, s)]2dx −
∫

Ω

a(x)[u(x, τ) − v(x, τ)]2dx

≤c
(∫ s

0

∫
Ω

a(x)|u(x, t) − v(x, t)|2dxdt
)q

,

(3.19)

where q < 1. By (3.19), by the generalized Gronwall Lemma 2.1, choosing

x(s) =

∫
Ω

a(x) | u(x, s) − v(x, s) |2 dx,

we have ∫
Ω

a(x) | u(x, s) − v(x, s) |2 dx ≤
∫

Ω

a(x) | u(x, τ) − v(x, τ) |2 dx. (3.20)

Thus, by the arbitrary of τ, we have∫
Ω

a(x) | u(x, s) − v(x, s) |2 dx ≤
∫

Ω

a(x) | u0(x) − v0(x) |2 dx.

The proof is complete. �

In what follows, we study the uniqueness of weak solution to Eq (1.9).

Proof of Theorem 1.4. Let u(x, t) and v(x, t) be two weak solutions of Eq (2.1) with the same initial
value u0(x) = v0(x).

For any given small δ > 0, we denote Dδ = {x ∈ Ω : |w| = |u−v| > δ}. Without loss of the generality,
we may assume that there is a δ > 0 such that the measure µ(Dδ) > 0. Let ϕλ(ξ) be a even function.
When ξ ≥ 0, it its defined as

ϕλ(ξ) =

{ 1
1−βλ

β−1 − 1
1−βξ

β−1, if ξ > λ,

0, if ξ ≤ λ,
(3.21)

where λ is small enough satisfying δ > 2λ > 0, 1 > β > 0, and we define that

Φλ(ξ) =

∫ ξ

0
ϕλ(ς)dς.
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By multiplying Eq (1.9) by ϕλ(w) = ϕλ(u − v), integrating over Qt = Ω × (0, t), since a(x) = 0 when
x ∈ ∂Ω, using the condition (3.2) in i) or the condition (3.1) in ii), we have

0 =

∫ t

0

∫
Ω

[
wtϕλ(w) + a(x)(|∇u|p−2∇u − |∇v|p−2∇v)∇ϕλ(w)

]
dxdt

+

N∑
i=1

∫ t

0

∫
Ω

∂bi(x, t)
∂xi

Φλ(u − v)dxdt

−

N∑
i=1

∫ t

0

∫
Ω

( f (u, x, t) − f (v, x, t))ϕλ(u − v)dxdt.

(3.22)

Let us analyse the three terms in the righthand side of this equality. First, the monotone inequality of
the operator ∆ yields ∫ t

0

∫
Ω

a(x)(|∇u|p−2∇u − |∇v|p−2∇v) · ∇(u − v)ϕ′λ(u − v)dxdt

≥

∫ t

0

∫
Dλ

a(x)(u − v)2−β2−p|∇w|pϕ′λ(u − v)dxdt

≥ 0.

(3.23)

Secondly, since u(x, t), v(x, t) ∈ L∞(QT ),∣∣∣∣∣∣∣
N∑

i=1

∫ t

0

∫
Ω

∂bi(x, t)
∂xi

Φλ(u − v)dxdt

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
N∑

i=1

∫ t

0

∫
Ω

( f (u, x, t) − f (v, x, t))ϕλ(u − v)dxdt

∣∣∣∣∣∣∣ ≤ c. (3.24)

Thirdly, let t0 = inf{τ ∈ (0, t] : w > λ}. Then∫ t

0

∫
Dλ

wtϕλ(w)dxdt =

∫
Dλ

(∫ t0

0
wtϕλ(w)dt +

∫ t

t0
wtϕλ(w)dt

)
dx

≥

∫
Dλ

∫ w(x,t)

λ

ϕλ(s)dsdx

≥

∫
Dλ

(w − 2λ)ϕλ(2λ)dx

≥ (δ − 2λ)ϕλ(2λ)µ(Dλ).

(3.25)

From (3.23)–(3.25), we have

(δ − 2λ)
1 − 2β−1

1 − β
λβ−1 ≤ c.

Letting λ→ 0, we get the contradiction. �

At the end of this section, we would like to point that, ϕλ(w) = ϕλ(u − v) does not satisfy the
request of the test function g(ϕ1ϕ2), so in the proof of Theorem 1.4, we do not use the equality (1.14)
in Definition 1.1. However, since the condition (3.2) in i) or the condition (3.1) in ii), all the boundary
integrals disappears in (3.22), and the proof of Theorem 1.4 is true.
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4. Conclusions

The non-Newtonian fluid equation with a variable diffusion is more applicable than the usual fluid
equation. In the PDE theory, since the variable diffusion a(x) may be degenerate on some points of Ω,
one can not deduce the inequality "

QT

|∇u|pdxdt < ∞,

and the weak solution matching up with the equation does not belong to Lp(0,T ; W1,p
0 (x)). Such a fact

makes the boundary value condition can not be imposed in the classical way. In this paper, a new kind
of weak solution introduced, the trace is generalized in accordance with the weak solution defined,
and it is found that a partial boundary value condition on a submanifold of ∂Ω × (0,T ) is enough to
ensure the weak solution well-posedness. In fact, the definitions, the theorems and the methods used in
this paper are able to be generalized to study the well-posed problem of the other degenerate parabolic
equations such as

∂u
∂t
− div

(
a(x, t)|∇u|p(x,t)−2∇u

)
−

N∑
i=1

bi(x, t)Diu = f (u, x, t), (x, t) ∈ QT ,

and

vt − div(|v|α|∇v|p−2
∇v) −

N∑
i=1

gi(x, t, v)
∂v
∂xi

= d(x, t, v), (x, t) ∈ QT ,

where α > 0 is a constant, p(x, t) > 1 is a continuous function.
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A. Appendix: The generalizations of the trace

In this appendix, we give a simple discussion of the trace. Without loss the generality, we assume
that f (x) ≥ 0. It is well-known that, C∞0 (Ω) is dense in W1,p

0 (Ω), and so the trace of f (x) ∈ W1,p(Ω) on
the boundary ∂Ω

f (x) = 0, x ∈ ∂Ω

is defined as the limit of a sequence fε(x) ∈ C∞0 (Ω) as

0 = lim
ε→0

fε(x)|x∈∂Ω. (A.1)
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As above in this paper, we denote Ωλ = {x ∈ Ω : d(x) > λ} for a small enough positive number λ,
and denote by B the closure of the set C∞0 (QT ) with respect to the norm

‖u‖B =

"
QT

a(x) (|u(x, t)|p + |∇u(x, t)|p) dxdt, u ∈ B.

Yin-Wang [28] defined the trace of u ∈ B, u(x, t) = 0 on Σ2 as

ess lim
λ→0

∫
{x∈∂Ωλ:

∑N
i=1 bi(x)ni(x)<0}

u2
N∑

i=1

bi(x)ni(x)dσ = 0. (A.2)

One can see that if a(x) = d(x), then dxi = ni with that ~n = {ni} is the inner normal. Then the
Definition (A.2) is just the same as that of (1.20). The reminder is to show that when a(x) satisfies
(1.10), a(x) , d(x), the Definition (A.2) is equivalent to that of (1.20).

At first, since a(x) satisfies (1.10) and
∫

Ω
a(x)|∇u|pdx < ∞, we know∫
Ωλ

|∇u|pdx < ∞

and u ∈ BV(Ωλ), the traces of

u2
N∑

i=1

bi(x)ni(x), x ∈ ∂Ωλ

and

u2
N∑

i=1

bi(x)axi(x), x ∈ ∂Ωλ

can be well defined in the sense of (A.1). Thus, the definition of (1.20) or the definition of (A.2) itself
has a explicit meaning. In fact, recalling the BV function space BV(Ω), i.e.

∣∣∣∣ ∂ f
∂xi

∣∣∣∣ is a regular measure,
and

BV(Ω) =

{
f (x) :

∫
Ω

∣∣∣∣∣ ∂ f
∂xi

∣∣∣∣∣ < c, i = 1, 2, · · · ,N
}
.

then BV(Ω) is a Banach space under the norm

‖ f ‖BV = ‖ f ‖L1 +

∫
Ω

|D f |.

By the trace f +(y) of f (x) ∈ BV(Ω) on the boundary ∂Ω is defined as the limit of f (x) along the normal
(Lemma 1 of [26]). Thus, if we denote that

Dλ = {x ∈ Ω : d(x) = dist(x, ∂Ω) > λ},

then for a f (x) ∈ BV(Ω)
⋂

L∞(Ω), we have

lim
λ→0

1
λ

∫
Ω\Dλ

f (x)dx =

∫
∂Ω

f +(x)dΣ. (A.3)
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Secondly, for a smooth bounded domain Ω, there is a finite open cover such that

Ω =
⋃
α

Bα, ∂Ω ⊆
⋃
α

Σα,

where Σα = Bα

⋂
∂Ω. If Σα , ∅, after using the flattening technique, we may assume that

B1 =
{
x ∈ RN : |x| < 1}, Bα

⋂
Ω = {x ∈ RN : |x| < 1, xN > 0

}
= B+(1),

Σα =
{
x ∈ RN : |x| < 1, xN = 0

}
,

and
d(x, ∂Ω) = xN , x ∈ Bα

⋂
Ω,

and
d(x, ∂Ω) = x2, x ∈ Bα.

Let a(x) ∈ C1(Ω) satisfy
a(x) > 0, x ∈ Ω, a(x) = 0, x ∈ ∂Ω.

Since a(x) > 0 when x ∈ B+
1 , and there is a small enough δ0 such that when 0 < x2 < δ

∂a(x)
∂x2

≥ c(δ0) > 0, x ∈ {B+
1 : 0 < x2 < δ0}. (A.4)

For small enough λ < δ0, we set

Exλ = {x ∈ B+
1 : a(x) < λ},

and denote the local coordinate representation Bα and Σα as above. By the coordinate transformation

y1 = x1, y2 = x2, · · · , yN−1 = xN−1, yN = a(x) (A.5)

the domain Exλ is transformed to Eyλ = Σα × (0, λ).
In Eyλ, it is clear of that d(y,Σα) = yN . Since f ∈ BV(Exλ) or f ∈ BV(Eyλ), as (A.3), we have∫

∂Ω

f +(y)dΣ

= lim
λ→0

1
λ

∫
Eyλ

f (y)dy

= lim
λ→0

1
λ

∫
Exλ

f (x)
∂a
∂xN

dx.

(A.6)

When f is nonnegative and f |∂Ω = 0, then the equality (A.6) can be re-calculated as

0 =

∫
∂Ω

f +(y)dΣ

= lim
λ→0

1
λ

∫
Eyλ

f (y)dy

= lim
λ→0

1
λ

∫
Exλ

f (x)
∂a
∂xN

dx

≤M
(
∂a
∂xN

)
lim
λ→0

1
λ

∫
Exλ

f (x)dx

=M
(
∂a
∂xN

) ∫
Σα

f +(x)dΣ = 0,

(A.7)
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where M
(
∂a
∂xN

)
= supx∈Σα

∂a
∂xN

. In other words, when f ∈ BV(Ω) is nonnegative and f |∂Ω = 0, (A.7)
implies that

lim
λ→0

1
λ

∫
Exλ

f (x)dx =

∫
Σα

f +(x)dΣ = 0. (A.8)

Thirdly, by (A.4), the coordinate transformation (A.5) has a inverse transformation

x1 = y1, x2 = y2, · · · , xN−1 = yN−1, xN = a−1(y). (A.9)

Recalling the definition of (1.20), i.e.,

ess sup lim
ε→0

1
ε

∫
(Ωε\Ω2ε)∩Ω1t

u2
N∑

i=1

bi(x, t)axi(x)dx = 0,

without loss the generality, under the inverse transformation (A.9), we may assume that the domain
(Ωε \Ω2ε) ∩Ω1t is transformed to a domain Dεy ∩Ω1t

Then, similar as the discussion of (A.7) and (A.8), the definition of (1.20) is equivalent to that

ess sup lim
ε→0

1
ε

∫
Dεy∩Ω1t

u2
N∑

i=1

bi(y, t)nyidy = 0.

From these point, one can see that the definition of (1.20) is just a reasonable version the definition
of (A.2), which is the generalized definition of the trace of u ∈ B with degeneracy on the boundary.
Actually, such a local analysis of the definition of the trace in BV(Ω) has appeared in our previous
work [33]. Since [33] is unpublished till now, we re-give the details here.
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