Research article

2-tuple linguistic $ q $-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection

  • Received: 25 June 2022 Revised: 14 July 2022 Accepted: 25 July 2022 Published: 29 July 2022
  • MSC : 03E72, 90B50

  • Industrial robots enable manufacturers to produce high-quality products at low cost, so they are a key component of advanced production technology. Welding, assembly, disassembly, painting of printed circuit boards, pick-and-place mass production of consumer products, laboratory research, surgery, product inspection and testing are just some of the applications of industrial robots. All functions are done with a high level of endurance, speed and accuracy. Many competing attributes must be evaluated simultaneously in a comprehensive selection method to determine the performance of industrial robots. In this research article, we introduce the 2TL$ q $-ROFS as a new advancement in fuzzy set theory to communicate complexities in data and presents a decision algorithm for selecting an arc welding robot utilizing the 2-tuple linguistic $ q $-rung orthopair fuzzy (2TL$ q $-ROF) set, which can dynamically delineate the space of ambiguous information. We propose the $ q $-ROF Hamy mean ($ q $-ROFHM) and the $ q $-ROF weighted Hamy mean ($ q $-ROFWHM) operators by combining the $ q $-ROFS with Hamy mean operator. We investigate the properties of some of the proposed operators. Then based on the proposed maximization bias, a new optimization model is built, which is able to exploit the DM preference to find the best objective weights among attributes. Next, we extend the COmbinative Distance-Based ASsessment (CODAS) method to 2TL$ q $-ROF-CODAS version which not only covers the uncertainty of human cognition but also gives DMs a larger space to represent their decisions. To validate our strategy, we present a case study of arc welding robot selection. Finally, the effectiveness and accuracy of the method are proved by parameter analysis and comparative analysis results. The results show that our method effectively addresses the evaluation and selection of arc welding robots and captures the relationship between an arbitrary number of attributes.

    Citation: Sumera Naz, Muhammad Akram, Afia Sattar, Mohammed M. Ali Al-Shamiri. 2-tuple linguistic $ q $-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection[J]. AIMS Mathematics, 2022, 7(9): 17529-17569. doi: 10.3934/math.2022966

    Related Papers:

  • Industrial robots enable manufacturers to produce high-quality products at low cost, so they are a key component of advanced production technology. Welding, assembly, disassembly, painting of printed circuit boards, pick-and-place mass production of consumer products, laboratory research, surgery, product inspection and testing are just some of the applications of industrial robots. All functions are done with a high level of endurance, speed and accuracy. Many competing attributes must be evaluated simultaneously in a comprehensive selection method to determine the performance of industrial robots. In this research article, we introduce the 2TL$ q $-ROFS as a new advancement in fuzzy set theory to communicate complexities in data and presents a decision algorithm for selecting an arc welding robot utilizing the 2-tuple linguistic $ q $-rung orthopair fuzzy (2TL$ q $-ROF) set, which can dynamically delineate the space of ambiguous information. We propose the $ q $-ROF Hamy mean ($ q $-ROFHM) and the $ q $-ROF weighted Hamy mean ($ q $-ROFWHM) operators by combining the $ q $-ROFS with Hamy mean operator. We investigate the properties of some of the proposed operators. Then based on the proposed maximization bias, a new optimization model is built, which is able to exploit the DM preference to find the best objective weights among attributes. Next, we extend the COmbinative Distance-Based ASsessment (CODAS) method to 2TL$ q $-ROF-CODAS version which not only covers the uncertainty of human cognition but also gives DMs a larger space to represent their decisions. To validate our strategy, we present a case study of arc welding robot selection. Finally, the effectiveness and accuracy of the method are proved by parameter analysis and comparative analysis results. The results show that our method effectively addresses the evaluation and selection of arc welding robots and captures the relationship between an arbitrary number of attributes.



    加载中


    [1] J. F. Engelberger, Robotics in practice: Management and applications of industrial robots, Springer, 2012.
    [2] J. N. Pires, A. Loureiro, G. Bölmsjo, Welding robots: Technology, system issues and application, London: Springer, 2006. https://doi.org/10.1007/1-84628-191-1
    [3] V. Kumar, S. K. Albert, N. Chanderasekhar, Development of programmable system on chip-based weld monitoring system for quality analysis of arc welding process, Int. J. Comput. Integ. Manuf., 33 (2020), 925–935. https://doi.org/10.1080/0951192X.2020.1815847 doi: 10.1080/0951192X.2020.1815847
    [4] H. K. Banga, P. Kalra, R. Kumar, S. Singh, C. I. Pruncu, Optimization of the cycle time of robotics resistance spot welding for automotive applications, J. Adv. Manuf. Process., 3 (2021), e10084. https://doi.org/10.1002/amp2.10084 doi: 10.1002/amp2.10084
    [5] E. F. Karsak, Z. Sener, M. Dursun, Robot selection using a fuzzy regression-based decision-making approach, Int. J. Prod. Res., 50 (2012), 6826–6834. https://doi.org/10.1080/00207543.2011.627886 doi: 10.1080/00207543.2011.627886
    [6] A. Ur Rehman, A. Al-Ahmari, Assessment of alternative industrial robots using AHP and TOPSIS, Int. J. Ind. Syst. Eng., 15 (2013), 475–489.
    [7] D. K. Sen, S. Datta, S. K. Patel, S. S. Mahapatra, Multi-criteria decision making towards selection of industrial robot: Exploration of PROMETHEE II method, Benchmarking, 22 (2015), 465–487. https://doi.org/10.1108/BIJ-05-2014-0046 doi: 10.1108/BIJ-05-2014-0046
    [8] Y. X. Xue, J. X. You, X. Zhao, H. C. Liu, An integrated linguistic MCDM approach for robot evaluation and selection with incomplete weight information, Int. J. Prod. Res., 54 (2016), 5452–5467. https://doi.org/10.1080/00207543.2016.1146418 doi: 10.1080/00207543.2016.1146418
    [9] M. K. Ghorabaee, Developing an MCDM method for robot selection with interval type-2 fuzzy sets, Robot. Comput.-Integr. Manuf., 37 (2016), 221–232. https://doi.org/10.1016/j.rcim.2015.04.007 doi: 10.1016/j.rcim.2015.04.007
    [10] S. Mondal, S. Kuila, A. K. Singh, P. Chatterjee, A complex proportional assessment method-based framework for industrial robot selection problem, Int. J. Res. Sci. Eng., 3 (2017), 368–378.
    [11] M. Mathew, S. Sahu, A. K. Upadhyay, Effect of normalization techniques in robot selection using weighted aggregated sum product assessment, Int. J. Innov. Res. Adv. Stud., 4 (2017), 59–63.
    [12] F. Zhou, X. Wang, M. Goh, Fuzzy extended VIKOR-based mobile robot selection model for hospital pharmacy, Int. J. Adv. Robot. Syst., 2018, 1–11. https://doi.org/10.1177/1729881418787315
    [13] M. Akram, S. Naz, S. A. Edalatpanah, R. Mehreen, Group decision-making framework under linguistic $q$-rung orthopair fuzzy Einstein models, Soft Comput., 25 (2021), 10309–10334. https://doi.org/10.1007/s00500-021-05771-9 doi: 10.1007/s00500-021-05771-9
    [14] M. Akram, S. Naz, F. Feng, A. Shafiq, Assessment of hydropower plants in Pakistan: Muirhead mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS, Arab. J. Sci. Eng., 2022. https://doi.org/10.1007/s13369-022-07081-0
    [15] M. Akram, S. Naz, F. Ziaa, Novel decision-making framework based on complex q-rung orthopair fuzzy information, Sci. Iran., 2021, 1–34. https://doi.org/10.24200/SCI.2021.55413.4209
    [16] S. Naz, M. Akram, S. Alsulami, F. Ziaa, Decision-making analysis under interval-valued q-rung orthopair dual hesitant fuzzy environment, Int. J. Comput. Intell. Syst., 14 (2021), 332–357. https://doi.org/10.2991/ijcis.d.201204.001 doi: 10.2991/ijcis.d.201204.001
    [17] H. Garg, S. Naz, F. Ziaa, Z. Shoukat, A ranking method based on Muirhead mean operator for group decision making with complex interval-valued q-rung orthopair fuzzy numbers, Soft Comput., 25 (2021), 14001–14027. https://doi.org/10.1007/s00500-021-06231-0 doi: 10.1007/s00500-021-06231-0
    [18] P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic q-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn. Cyber., 13 (2022), 883–906. https://doi.org/10.1007/s13042-021-01425-2 doi: 10.1007/s13042-021-01425-2
    [19] S. Naz, M. Akram, M. A. Al-Shamiri, M. M. Khalaf, G. Yousaf, A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators, Math. Biosci. Eng., 19 (2022), 3843–3878. https://doi.org/10.3934/mbe.2022177 doi: 10.3934/mbe.2022177
    [20] S. Naz, M. Akram, A. B. Saeid, A. Saadat, Models for MAGDM with dual hesitant q-rung orthopair fuzzy 2-tuple linguistic MSM operators and their application to COVID-19 pandemic, Expert Syst., 2022. https://doi.org/10.1111/exsy.13005
    [21] S. Naz, M. Akram, G. Muhiuddin, A. Shafiq, Modified EDAS method for MAGDM based on MSM operators with 2-tuple linguistic-spherical fuzzy sets, Math. Probl. Eng., 2022 (2022), 1–34. https://doi.org/10.1155/2022/5075998 doi: 10.1155/2022/5075998
    [22] M. Akram, N. Ramzan, F. Feng, Extending COPRAS method with linguistic Fermatean fuzzy sets and Hamy mean operators, J. Math., 2022 (2022), 1–26. https://doi.org/10.1155/2022/8239263 doi: 10.1155/2022/8239263
    [23] M. Akram, U. Noreen, M. M. Ali Al-Shamiri, Decision analysis approach based on 2-tuple linguistic-polar fuzzy hamacher aggregation operators, Discrete Dyn. Nat. Soc., 2022 (2022), 1–22. https://doi.org/10.1155/2022/6269115 doi: 10.1155/2022/6269115
    [24] S. Naz, M. Akram, M. M. A. Al-Shamiri, M. R. Saeed, Evaluation of network security service provider using 2-tuple linguistic complex-rung orthopair fuzzy COPRAS method, Complexity, 2022 (2022), 1–27. https://doi.org/10.1155/2022/4523287 doi: 10.1155/2022/4523287
    [25] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [26] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [27] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [28] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [29] P. Liu, J. Liu, Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315–347. https://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
    [30] G. Wei, C. Wei, J. Wang, H. Gao, Y. Wei, Some q-rung orthopair fuzzy Maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization, Int. J. Intell. Syst., 34 (2019), 50–81. https://doi.org/10.1002/int.22042 doi: 10.1002/int.22042
    [31] Z. Liu, S. Wang, P. Liu, Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators, Int. J. Intell. Syst., 33 (2018), 2341–2363. https://doi.org/10.1002/int.22032 doi: 10.1002/int.22032
    [32] Z. Yang, T. Ouyang, X. Fu, X. Peng, A decision-making algorithm for online shopping using deep-learning based opinion pairs mining and q-rung orthopair fuzzy interaction Heronian mean operators, Int. J. Intell. Syst., 35 (2020), 783–825. https://doi.org/10.1002/int.22225 doi: 10.1002/int.22225
    [33] P. Liu, S. M. Chen, P. Wang, Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators, IEEE Trans. Syst., Man, Cybern.: Syst., 50 (2018), 3741–3756. https://doi.org/10.1109/TSMC.2018.2852948 doi: 10.1109/TSMC.2018.2852948
    [34] A. Hussain, M. I. Ali, T. Mahmood, M. Munir, Group-based generalized q-rung orthopair average aggregation operators and their applications in multi-criteria decision making, Complex Intell. Syst., 7 (2021), 123–144. https://doi.org/10.1007/s40747-020-00176-x doi: 10.1007/s40747-020-00176-x
    [35] P. He, Z. Yang, B. Hou, A multi-attribute decision-making algorithm using q-rung orthopair power Bonferroni mean operator and its application, Mathematics, 8 (2020), 1240. https://doi.org/10.3390/math8081240 doi: 10.3390/math8081240
    [36] Z. Ali, T. Mahmood, Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets, Comput. Appl. Math., 39 (2020), 1–27. https://doi.org/10.1007/s40314-020-01145-3 doi: 10.1007/s40314-020-01145-3
    [37] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [38] F. Herrera, L. Martinez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
    [39] Z. Wang, R. M. Rodriguez, Y. M. Wang, L. Martinez, A two-stage minimum adjustment consensus model for large scale decision making based on reliability modeled by two-dimension 2-tuple linguistic information, Comput. Ind. Eng., 151 (2021), 106973. https://doi.org/10.1016/j.cie.2020.106973 doi: 10.1016/j.cie.2020.106973
    [40] Z. Zhang, Z. Li, Y. Gao, Consensus reaching for group decision making with multi-granular unbalanced linguistic information: A bounded confidence and minimum adjustment-based approach, Inform. Fusion, 74 (2021), 96–110. https://doi.org/10.1016/j.inffus.2021.04.006 doi: 10.1016/j.inffus.2021.04.006
    [41] W. P. Wang, Evaluating new product development performance by fuzzy linguistic computing, Expert Syst. Appl., 36 (2009), 9759–9766. https://doi.org/10.1016/j.eswa.2009.02.034 doi: 10.1016/j.eswa.2009.02.034
    [42] X. Deng, J. Wang, G. Wei, Some 2-tuple linguistic Pythagorean Heronian mean operators and their application to multiple attribute decision-making, J. Exp. Theor. Artif. Intell., 31 (2019), 555–574. https://doi.org/10.1080/0952813X.2019.1579258 doi: 10.1080/0952813X.2019.1579258
    [43] G. Wei, H. Gao, Pythagorean 2-tuple linguistic power aggregation operators in multiple attribute decision making, Economic Research-Ekonomska Istraivanja, 33 (2020), 904–933. https://doi.org/10.1080/1331677X.2019.1670712 doi: 10.1080/1331677X.2019.1670712
    [44] Y. Ju, A. Wang, J. Ma, H. Gao, E. D. Santibanez Gonzalez, Some q-rung orthopair fuzzy 2-tuple linguistic Muirhead mean aggregation operators and their applications to multiple-attribute group decision making, Int. J. Intell. Syst., 35 (2020), 184–213. https://doi.org/10.1002/int.22205 doi: 10.1002/int.22205
    [45] Z. Liang, Models for multiple attribute decision making with fuzzy number intuitionistic fuzzy Hamy mean operators and their application, IEEE Access, 8 (2020), 115634–115645. https://doi.org/10.1109/ACCESS.2020.3001155 doi: 10.1109/ACCESS.2020.3001155
    [46] Z. Li, H. Gao, G. Wei, Methods for multiple attribute group decision making based on intuitionistic fuzzy dombi Hamy mean operators, Symmetry, 10 (2018), 574. https://doi.org/10.3390/sym10110574 doi: 10.3390/sym10110574
    [47] L. Wu, J. Wang, H. Gao, Models for competiveness evaluation of tourist destination with some interval-valued intuitionistic fuzzy Hamy mean operators, J. Intell. Fuzzy Syst., 36 (2019), 5693–5709. https://doi.org/10.3233/JIFS-181545 doi: 10.3233/JIFS-181545
    [48] Z. Li, G. Wei, M. Lu, Pythagorean fuzzy Hamy mean operators in multiple attribute group decision making and their application to supplier selection, Symmetry, 10 (2018), 505. https://doi.org/10.3390/sym10100505 doi: 10.3390/sym10100505
    [49] J. Wang, G. Wei, J. Lu, F. E. Alsaadi, T. Hayat, C. Wei, et al., Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision-making and their application to enterprise resource planning systems selection, Int. J. Intell. Syst., 34 (2019), 2429–2458. https://doi.org/10.1002/int.22155 doi: 10.1002/int.22155
    [50] M. K. Ghorabaee, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-based assessment (CODAS) method for multi-criteria decision making, Econ. Comput. Econ. Cyber. Stud. Res., 50 (2016), 25–44.
    [51] D. Panchal, P. Chatterjee, R. K. Shukla, T. Choudhury, J. Tamosaitiene, Integrated fuzzy AHP-Codas framework for maintenance decision in urea fertilizer industry, Econ. Comput. Econ. Cyber. Stud. Res., 51 (2017), 179–196.
    [52] I. Badi, M. A. Ballem, A. Shetwan, Site selection of desalination plant in Libya by using combinative distance-based assessment (CODAS) method, Int. J. Qual. Res., 12 (2018), 609–624. https://doi.org/10.18421/IJQR12.03-04 doi: 10.18421/IJQR12.03-04
    [53] M. K. Ghorabaee, M. Amiri, E. K. Zavadskas, R. Hooshmand, J. Antucheviien, Fuzzy extension of the CODAS method for multi-criteria market segment evaluation, J. Bus. Econ. Manage., 18 (2018), 1–19. https://doi.org/10.3846/16111699.2016.1278559 doi: 10.3846/16111699.2016.1278559
    [54] D. Pamucar, I. Badi, K. Sanja, R. Obradovic, A novel approach for the selection of powergeneration technology using a linguistic neutrosophic CODAS method: A case study in Libya, Energies, 11 (2018), 2489. https://doi.org/10.3390/en11092489 doi: 10.3390/en11092489
    [55] S. Seker, A novel interval-valued intuitionistic trapezoidal fuzzy combinative distance-based assessment (CODAS) method, Soft Comput., 24 (2020), 2287–2300. https://doi.org/10.1007/s00500-019-04059-3 doi: 10.1007/s00500-019-04059-3
    [56] F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems under linguistic information, Fuzzy Sets Syst., 115 (2000), 67–82. https://doi.org/10.1016/S0165-0114(99)00024-X doi: 10.1016/S0165-0114(99)00024-X
    [57] F. Herrera, L. Martinez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [58] T. Hara, M. Uchiyama, S. E. Takahasi, A refinement of various mean inequalities, J. Inequal. Appl., 1998 (1998), 932025.
    [59] S. Wu, J. Wang, G. Wei, Y. Wei, Research on construction engineering project risk assessment with some 2-tuple linguistic neutrosophic Hamy mean operators, Sustainability, 10 (2018), 1525–1536. https://doi.org/10.3390/su10051536 doi: 10.3390/su10051536
    [60] R. R. Yager, The power average operator, IEEE Trans. Syst., Man, Cybern.-Part A: Syst. Hum., 31 (2001), 724–731. https://doi.org/10.1109/3468.983429
    [61] Z. Xu, R. R. Yager, Power-geometric operators and their use in group decision making, IEEE Trans. Fuzzy Syst., 18 (2009), 94–105. https://doi.org/10.1109/TFUZZ.2009.2036907 doi: 10.1109/TFUZZ.2009.2036907
    [62] Z. S. Chen, K. S. Chin, Y. L. Li, Y. Yang, On generalized extended Bonferroni means for decision making, IEEE Trans. Fuzzy Syst., 24 (2016), 1525–1543. https://doi.org/10.1109/TFUZZ.2016.2540066 doi: 10.1109/TFUZZ.2016.2540066
    [63] S. H. Xiong, Z. S. Chen, J. P. Chang, K. S. Chin, On extended power average operators for decision-making: A case study in emergency response plan selection of civil aviation, Comput. Ind. Eng., 130 (2019), 258–271. https://doi.org/10.1016/j.cie.2019.02.027 doi: 10.1016/j.cie.2019.02.027
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1285) PDF downloads(65) Cited by(4)

Article outline

Figures and Tables

Figures(7)  /  Tables(25)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog