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Abstract: Industrial robots enable manufacturers to produce high-quality products at low cost, so
they are a key component of advanced production technology. Welding, assembly, disassembly,
painting of printed circuit boards, pick-and-place mass production of consumer products, laboratory
research, surgery, product inspection and testing are just some of the applications of industrial robots.
All functions are done with a high level of endurance, speed and accuracy. Many competing attributes
must be evaluated simultaneously in a comprehensive selection method to determine the performance
of industrial robots. In this research article, we introduce the 2TLg-ROFS as a new advancement in
fuzzy set theory to communicate complexities in data and presents a decision algorithm for selecting
an arc welding robot utilizing the 2-tuple linguistic g-rung orthopair fuzzy (2TLg-ROF) set, which
can dynamically delineate the space of ambiguous information. We propose the g-ROF Hamy mean
(g-ROFHM) and the g-ROF weighted Hamy mean (g-ROFWHM) operators by combining the
g-ROFS with Hamy mean operator. We investigate the properties of some of the proposed operators.
Then based on the proposed maximization bias, a new optimization model is built, which is able to
exploit the DM preference to find the best objective weights among attributes. Next, we extend the
COmbinative Distance-Based ASsessment (CODAS) method to 2TLg-ROF-CODAS version which
not only covers the uncertainty of human cognition but also gives DMs a larger space to represent
their decisions. To validate our strategy, we present a case study of arc welding robot selection.
Finally, the effectiveness and accuracy of the method are proved by parameter analysis and
comparative analysis results. The results show that our method effectively addresses the evaluation
and selection of arc welding robots and captures the relationship between an arbitrary number of
attributes.
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1. Introduction

Industrial robots are machines used for manufacturing. In material handling, spot welding,
material removal, arc welding, inspection and testing, handling, assembly, finishing and painting,
robots are used to perform repetitive, difficult and dangerous with greater precision, accuracy and
precision task speed. The main reasons for industrial use of industrial robots are to reduce operating
costs and increase manufacturing efficiency. An industrial robot has several parameters, including
mechanical weight, payload capacity, repeatability, etc. [1]. These parameters make it a MAGDM
problem. Welding is the most sought-after skill in any industrial business. Since the invention of
industrial robots, there has been a high demand for industrial robots for welding applications. Arc
welding, metal arc welding, carbon arc welding, metal inert gas welding, plasma arc welding,
tungsten inert gas welding, electro-slag welding and submerged arc welding [2] are some of several
types of arc welding. Arc welding robots are programmed to perform all forms of arc welding tasks.
In arc welding [3], electricity is used to form an arc between an electrode and a conductive base
metal. Arc welding is widely used in most manufacturing companies. However, as technology
advances and product demand increases, manufacturing companies are turning to robot-assisted
manufacturing [4]. To provide manufacturers a common configuration to let them choose between a
variety of arc welding robots. The objective of this study is to investigate using MAGDM approaches
to prioritize industrial arc welding robots. To choose the best robot for multiple objectives, different
MAGDM techniques such as VIKOR, ELECTRE, and compromise ranking techniques were used.
For robot selection, researchers used a decision model based on fuzzy linear regression. Four criteria
were used to evaluate twenty-seven industrial robots [5]. The Analytic Hierarchy Process (AHP) and
TOPSIS MADM techniques were used to compare and assess seven industrial robot choices based on
two criterion and six sub-criteria [6]. Using a set of objective data, a PROMETHEE I approach was
used to select the robot. Fourteen and seven distinct industrial robots were compared based on four
and five criteria, respectively, in two numerical illustrations [7]. For solving robot selection problems
with incomplete weight information, an integrated model based on hesitant 2-tuple linguistic term sets
and an expanded QUALIFLEX technique was developed [8]. For robot selection, the VIKOR method
was introduced, which used a type-2 fuzzy sets methodology to evaluate eight industrial robot
alternatives using seven criteria [9]. The application of the COPRAS method’s multi-criteria approach
to solve an industrial robot selection problem was demonstrated. Seven different industrial robot
models were chosen and compared based on five alternatives [10]. The WASPAS approach was
proposed as an MADM tool for picking the best robot among seven different real-time industrial robot
models that were assessed using five criteria [11]. To evaluate mobile robot selection for a hospital
pharmacy, a fuzzy extended VIKOR method was created by combining fuzzy AHP and VIKOR-based
techniques. On the basis of seven parameters, three different mobile robots were compared [12].

MAGDM is a fascinating research topic that has attracted widespread attention from scholars and
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scientists all over the world [13-24]. Decision-makers (DMs) use some tools in the MAGDM
framework to effectively and appropriately articulate their evaluation values. Following that, several
approaches or strategies are used to identify the ranking order of viable choices and make the ultimate
selection. The ¢g-ROFS, developed by Yager [25], is an effective tool for representing DM assessment
data. As an extension of the intuitionistic fuzzy set [26] and Pythagorean fuzzy set [27], g-ROFS
successfully models DMs’ reluctance when presenting their assessment information, as it allows the
membership degree (MD) and non-membership degree (NMD) sets of some values in the interval [0,
1]. The gth power of the MD and the gth power of the NMD must be < 1 to satisfy the g-ROFS
constraint. The preceding data can be represented as Q = (0.6,0.9), which is a g-rung orthopair fuzzy
number (since (0.6)7 + (0.9)7 < 1). As a result, g-ROFS has been widely used in MAGDM, and
several new decision-making methods have been proposed. An MAGDM technique based on the
q-ROF geometric-arithmetic weighted averaging operator was proposed by Liu and Wang [28]. Liu
and Liu [29] extended the traditional Bonferroni mean operator to the ¢g-ROF set and developed an
MAGDM technique based on the g-ROF Bonferroni mean operator, recognizing the correlation
between many attributes may affect the decision results. The MAGDM technique proposed by Wei
et al. [30] is subject to the g-ROF Maclaurin symmetric mean (MSM) operator. In light of the fact that
the association between ¢g-ROF numbers may be heterogeneous, Liu et al. [31] suggested an MAGDM
approach based on the ¢g-ROF distributed Heronian mean operator. Yang et al. [32] developed a deep
learning and ¢-ROF interactive weighted Heronian averaging operator-based online shopping
assistance model. The g-ROF power MSM operators were provided by Liu et al. [33] to develop a
new MAGDM technique from the expert group’s viewpoint. The MAGDM technique was developed
by Hussain et al. [34] using the group-based generalized ¢g-ROF average aggregation operations. To
solve the MAGDM difficulties, He et al. [35] proposed the g-ROF power Bonferroni mean operator.
The complex g-ROF MSM operators were further established by Ali and Mahmood [36]. The works
cited above demonstrate the effectiveness of g-ROFSs in dealing with the difficult assessment values
of DMs in the MAGDM technique.

Since Zadeh [37] proposed linguistic variation (LV) theory, in particular to solve the ensemble of
linguistic MAGDM challenges, many advances have been made in the study of linguistic MAGDM
challenges. Fuzzy linguistic techniques have been proven effective in various fields and applications.
Several researchers have studied the problem of group decision-making, where both attributes and
decision expert weights are represented as linguistic words in the recent literature. They suggested
an MAGDM-based method that focuses on actual language knowledge, defined linguistic assessment
operational principles, established a few new operators, and defined linguistic assessment operational
principles. Originally, Herrera and Martinez [38] proposed the 2TL representation approach. It is
comprised of a linguistic term and a number and represents linguistic information with a pair of values
known as a 2-tuple. In linguistic information processing, the 2TL model has precise characteristics.
It prevented information loss and distortion, which previously occurred during linguistic information
processing. This strategy has been increasingly popular in recent years for group DM [39,40]. They
also proposed the 2TL computational model and 2TL aggregation operators, as well as DM techniques.
Wang [41] provided a model for determining which agile manufacturing system is best for you. Deng
et al. [42] investigated novel complex 7-SF 2TL Muirhead mean aggregation operators. Wei and
Gao [43] developed several Pythagorean fuzzy 2TL power AOs using the power average and power
geometric operations with Pythagorean fuzzy 2TL information to tackle the MAGDM challenges. To
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tackle the MAGDM problem using 2TLg-ROF information, Ju et al. [44] developed the 2TLg-ROF
weighted AO and the 2TLg-ROF weighted geometric operator. They also propose the 2TLg-ROF
Muirhead mean operator and the 2TLg-ROF dual Muirhead mean operator.

Many wide assortments of studies have been undertaken to learn more about the correlation between
arguments, which is a crucial feature of aggregated data. The Hamy mean (HM) operator is one of the
more comprehensive, adaptable, and dominant concepts used to operate troublesome and contradictory
information in real-life challenges, and certain scholars have implemented it in the environment of
numerous domains to find the relation between any number of attributes. Liang [45] also initiated
the HM operators for IFSs, Li et al. [46] proposed the Dombi HM operators for IFSs, Wu et al. [47]
initiated the Dombi HM operators for interval-valued IFSs, and developed the Dombi HM operators
for interval-valued IFSs, Li et al. [48] investigated the HM operators for PFS, and Wang et al. [49]
investigated the HM operators under the g-ROFSs. Ghorabaee et al. [50] established the CODAS
technique, which is an efficient and up-to-date decision-making methodology. It is a distance-based
method that employs Euclidean distance (ED) and Hamming distance (HM) measures. As a primary
comparison measure, this method employs the ED. Whenever the EDs between two alternatives are
relatively close, HDs are employed to compare them. A threshold parameter determines the degree
of closeness of EDs. On the basis of the AHP and CODAS methods, Panchal et al. [51] developed
an integrated MAGDM architecture. Badi et al. [52] used the CODAS technique to determine the
ideal location for a desalination facility on Libya’s northwest coast. Ghorabaee et al. [53] applied the
CODAS approach to picking the most attractive providers in a fuzzy environment. Pamucar et al. [54]
proposed a novel CODAS approach based on linguistic neutrosophic numbers. However, no one has
utilized the HM operators’ idea in the domain of 2TL-g-ROFS in terms of CODAS approach yet.

In this study, we use 2TLg-ROFS as it provides a stronger definition of fuzziness and thus more
accurate evaluation of the decision making process by permitting DMs to assess a wider range due to
the uncertainties in the addressed problems and the lack of information and inconsistencies among
expert groups. So, we developed the 2TLg-ROFS as a new evolution in FS theory for communicating
data complexities. The 2TLg-ROFS involves the integration of 2TL and g-ROF sets and expands the
q-ROFS adaptability. When making a collective choice, the DMs may only have a hazy idea of how
much they like one alternative over another and are unable to measure their preferences with exact
numerical numbers. Rather than numerical variables, it is more appropriate to communicate their
preferences through linguistic variables. We devised a technique called the maximizing deviation
approach to discover the ideal relative weights of qualities under linguistic context, based on the
premise that the attribute with a greater deviation value among alternatives should be considered with
a greater weight. The development has the notable feature of being able to reduce the influence of
DMs’ subjectivity and make adequate use of decision information. Then, using the HM operator, we
suggested a generic strategy for grouping multi-attribute DM issues with linguistic information, in
which preference values are expressed as linguistic variables. Furthermore, we use CODAS method
which is a powerful technique to solve a group DM challenge and selecting the best alternative for
selection of the best arc welding robot. It has several advantages that aren’t considered by other
MAGDM approaches [55]. These are the main contributions of this study:

(i) We introduce 2TLg-ROFS as a new advance in FS theory to communicate the complexity of the
data. 2TLg-ROFS combines the advantages of 2TL and ¢g-ROF sets, increasing the versatility of
q-ROFS.
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(i) We introduce a family of HM aggregation operators for 2TLg-ROFS, such as 2TLg-ROFHM
operator, 2TLg-ROFDHM operator, 2TLg-ROFWHM operator and 2TLg-ROFWDHM. The
2TLg-ROFWDHM operator is used to deal with group decision-making problems with
interrelated attributes.

(iii) Some theorems, properties, and formal definitions of the proposed information aggregation
operators are inferred from existing situations.

(iv) Based on the 2TLg-ROFWHM and 2TLg-ROFWDHM operators, a 2TLg-ROF-CODAS method
is proposed to rank the alternatives. A novel MAGDM model is used to fuse the evaluation
preferences of DMs.

(v) A decision-making system based on 2TLg-ROF-CODAS method for evaluating and selecting arc
welding robots is designed.

The following is the structure of the paper: Section 2 covers various key ideas, including the 2TL
representation model, the description of g-ROFS, the HM operator, and the dual HM operator.
Section 3 introduces the concept of 2TLg-ROFSs and how it works. The 2TLg-ROFHM,
2TLqg-ROFDHM, 2TLg-ROFWHM and 2TLg-ROFWDHM aggregation operators with optimal
properties are developed in section 4. In the section 5, the MAGDM policy is constructed by using the
2TLg-ROFWHM and 2TLg-ROFWDHM operators in the 2TLg-ROFS environment. The section 6
provides numerical examples, parameter effects, comparative analysis, and benefits to illustrate the
usefulness and superiority of the established method. Finally, Section 7 summarizes the research and
suggests future directions.

2. Preliminaries

Definition 2.1. [56] Let there exists a linguistic term set (LTS) S = {s]t = 0,1,...,7} with odd
cardinality, where s, indicates a possible linguistic term for a linguistic variable. If s, s, € §, then the
LTS meets the following characteristics:

(i) The set is ordered: s; > s,, if and only if 7 > j.

(ii) Max operator: max(s;, s;) = s, if and only if # > j.
(iii) Min operator: min(s;, s,) = s, if and only if 7 < ;.
(iv) Negative operator: Neg(s,) = s, such that j =7 —1.

The 2TL representation model based on the idea of symbolic translation, introduced by Herrera and
Martinez [57], is useful for representing the linguistic assessment information by means of a 2-tuple
(84, v;), where s; is a linguistic label from predefined LTS S and v, is the value of symbolic translation,
and v, € [-0.5,0.5).

Definition 2.2. [57] Let o be the result of an aggregation of the indices of a set of labels assessed in a
LTS S, i.e., the result of a symbolic aggregation operation, o € [0, 7], where 7 is the cardinality of §.
Let r = round(p) and v = o — ¢ be two values, such that, ¢ € [0, 7] and v € [-0.5,0.5) then v is called a
symbolic translation.
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Definition 2.3. [57] LetS = {s]t = 1,...,7} be a LTS and o € [0, 7] is a number value representing
the aggregation result of linguistic symbolic. Then the function A used to obtain the 2TL information
equivalent to o is defined as:

A:[0,7] = § x[-0.5,0.5),

Alo) = s;, t = round(o) 2.0
er= v=p-1t ve[-050.)5). .

Definition 2.4. [57] Let S = {s//t = 1,...,7} be a LTS and (s;, v;) be a 2-tuple, there exists a function
A~! that restore the 2-tuple to its equivalent numerical value o € [0, 7] C R, where

A8 x[-0.5,0.5) — [0, 7],
Al(s,v)=t+v=o. 2.2)

Yager [25] defined the g-rung orthopair fuzzy set as an extension of intuitionistic fuzzy set and
Pythagorean fuzzy set as follows.

Definition 2.5. [25] For any universal set X, a g-ROFS is of the form
T = {{x, p(x), l(x))|x € X},

where p,[: X — [0, 1] represent the MD and NMD, respectively, with the condition 0 < p9(€) +19(£) <
1 for positive number g > 1 and r(£) = (’/ 1 = (pi(€) + l4(¢)) is known as the degree of refusal of £ in
T. To express information conveniently, the pair (p, /) is known as a g-rung orthopair fuzzy number
(¢-ROEN).

A ¢-ROFN is a generalized form of existing fuzzy framework and it reduces to:

(i) Pythagorean fuzzy number (PFN); by taking ¢ as 2.
(ii) Intuitionistic fuzzy number (IFN); by taking ¢ as 1.
(iii) Fuzzy number (FN); by taking / as zero and ¢ as 1.

Definition 2.6. Let a,(;j = 1,2,...,n) be a set of non-negative real numbers. Some HM aggregation
operators are defined as follows:

1
1<t <Z<t < (I_fllatj]
(1) Hamy mean [58]: HM®(a;,q,,...,0q,) = %
1

K oy I3
) [T(ag)
Ity <..<tgsn\y=1 .

(2) Weighted Hamy mean [58]: WHM®(aj, as,...,q,) = = :

L

I<ti<..<te<n|

ia‘./ c
(3) Dual Hamy mean [59]; DHM<K><a1,a2,...,an>=[ [ [ ]] |
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1<t <...<t<n

Zklwtjat, "
(4) Weighted dual Hamy mean [59]: WDHMgg(al,az,...,an):[ I (‘—]] ,

where « is a parameter and x = 1,2,...,m,1,t,...,1, are « integer values taken from the set
{1,2,...,n} of t integer values, C} denotes the binomial coeflicient, and Ci = n!/(x!(n — k)!).

For other concepts and applications, the readers are refer to [60—63].
3. 2-Tuple linguistic g-rung orthopair fuzzy set

We introduce the 2TLg-ROFS with its operational laws as a new advancement of FS theory, in this
section. Inspired by the ideas of 2TL and ¢-ROF sets, we develop the new concept of 2TLg-ROFS
by combining both the advantages of 2TL and ¢g-ROF sets, as an extension of 2TLIFSs and 2TLPFSs.
The newly proposed set has flexibility due to the gth power of MD and NMD. The mathematical
representation of 2TLg-ROFS is described as follows.

Definition 3.1. Let S = {s{t = 0,1,...,7} be a LTS with odd cardinality. If (s,(x), p(x)), (s5,.(x), {(x))
is defined for s,(x), s.(x) € S, p(x),{(x) € [-0.5,0.5), where (s,(x), p(x)) and (s,(x), {(x)) represent
the MD and NMD by 2TLSs, respectively. A 2TL g-rung orthopair fuzzy set is defined as:

R = {(x, ((sp(x0), p(x)), (5,(x), LNIx € X, (3.1

where 0 < A (s, (x), 9(x)) < 7,0 < A (s,(x), £(x)) < 7, and
0 < (A7 (s,(x), p(0))? + (A7 (5,(x), L(x)))? < 4.

To compare any two 2TLg-ROFNs, their score value and accuracy value are defined as follows.

Definition 3.2. Letn = ((s,, ), (s,, {)) be a 2TLg-ROFN. Then the score function S of a 2TLg-ROFN
n, can be represented as:

St = A(3(1+ (22 )q - (=2))), Sa e 0,71 (3.2)

and its accuracy function H is defined as:

Hp) = A(T ((M)q ; (M)")) H) € [0,7]. (3.3)

Definition 3.3. Let ; = ((s,,, 1), (5, {1) and 172 = ((5p,, 92), (51,,¢2)) be two 2TLg-ROFNSs, then
these two 2TLg-ROFNs can be compared according to the following rules:

(1) If S(71) > S(p2), then 7y > 123
(2) If S(71) = S(12), then

o If H(m) > H(pn), then gy > 123
o If H(n1) = H(nn), then iy ~ ms.
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Definition 3.4. Let m = ((Spl, @1), (511,{1 )) and n = ((sz, Qz), (Slz,é/z)) be two 2TLC[-ROFNS We
define the 2TLg-ROF normalized ED and HD as:
1
+ (A-‘(i,l,gl))’f _ (A‘I(S;;Z’{z))q'q )q) (3.4)

(A-l(s,,l,m))q B (A-'<s,,2,m))q 1
(g q (g q -1, o \2 (s, o) \2
HD(mJ]z)=A(§( (A (:l,gol)) _(A (52@)) + (A <Tl_m) _(A (Tz.m) )) (3.5)

We now put forward the novel operational laws based on 2TLg-ROFNs, including addition,
multiplication, scalar multiplication, power and ranking rules.

Definition 3.5. Let n= ((Sp’ 8/'))’ (sr’ {))7 m = ((Spl 5 8/')1)9 (Srla {1))’ and M = ((sp2$ 802)’ (srza {2)) be three
2TLg-ROFNSs, g > 1, then

0 m @ = | a1 (1= (21— () ) o) () |
o s {22 o)
3) An:[A(Ti/l_(l_( <m))} (T () )
@ 1= [ afe(ze2) ) a[rifi- -2y

4. Some 2TLg-ROF Hamy mean aggregation operators

ED(p1, 1) = A[%(

, A>0;

, 1> 0.

Hara et al. [58] proposed the concept of Hamy mean operator. In this Section, the 2TLg-ROFHM,
2TLg-ROFWHM, 2TLg-ROFDHM, and 2TLg-ROFWDHM  operators for aggregating the
2TLg-ROFNs are proposed to extend the HM aggregation operators to the 2TLg-ROFS environment.
Since 2TLg-ROFS is a useful technique for expressing ambiguous data in a real-world
decision-making context. Core features of aggregation operators are idempotency, monotonicity, and
boundedness.

4.1. 2TLq-ROFHM aggregation operator

This subsection introduces the new concept of the 2TLg-ROFHM operator for aggregating 2TLg-
ROFNs and examines its distinctive and preferred features.

Definition 4.1. Let 7, = ((s,.9)).(5,.£))( = 1,2,..., 1) be a collection of 2TLg-ROFNs. The
2TLg-ROFHM operator is a mapping 7" — T such that

1
691§t|<...<t,<£n (®I;:177t1)K

2TLq-ROFHM(K)(77] 5T oo vs 7711) = CK
n

4.1)

Theorem 4.1. Utilizing the 2TLq-ROFHM operator, the aggregated value is likewise a 2TLg-ROFN
value, where
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2TLg-ROFHM™ (11,13, ., 11w)

INT
q KA s, o0\ |
A 741— I [1 —(n = Cr?) ,
1<t <..<te<n J=1

— o 4.2)
K -l(g q % &
A T[ I i/l—]‘[(l_(é (T”’{’))) ]
1<t <..<te<n J=1
Proof. By utilizing Definition 3.5, we get
K g K (s, q
®;:177t‘, = ( A(TH M),A[le 11 (1 _ (M) )] ]
J=1 J=1
Thus,
1 1 q 1
1 K Al(s, ¢ K . K “1(s, I3
(@ m,)" = [ A[r(]‘[ A_<Tm’f’-1>) ),A[r(/l - ]‘[(1 _(_A &, 4.0) ) ] ]
=1 J=1
Therefore,
q
K A-l(s o K
A[T{/l - I [1 - (H = (:J’W) ]J,
B % 1<t <...<te<n J=1
i<t <..<t<n (®F177t,) = 1
g A s, VT
AlT I 1-]J11(1- —
I1<t;<..<te<n J=1
Furthermore,
A[T# 1- I (1 - (]—KI AI(S:/’WI))K] "],
I<t)<..<t<n J=1
2TLg-ROFHM® (51,12, ...,my) = ] %
K A (s, ) \O\ ¢ “
A q1=T7 (1 - (2
[T[lst|<r.l<tksn\/ /:rll( ( T )) ] J
O

The desirable properties of the 2TLg-ROFHM operator, such as idempotency, monotonicity, and
boundedness, are also described below.

Property 4.1. (Idempotency). If all n, = ((Sp,, 9, (Sr,,§,)) (J=1,2,...,m) are equal, for all j, then
2TLg-ROFFHM™ (1,12, ..., 1) = 1.
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Proof.

) HaE
A T N 1 - H [1 - (n A](:]hfp)) ] )
1<t <..<t<n J=1
e
A 1509\ 5 K
Alr (1= 7 (1 - (AL=2))*
15t1<1._..[<t,<5n j:l_Il( ( T ) )

2TLg-ROFHM® (571,12, . .., 1)

{ [Jl s

((sp, 9). (5.0)) = 1.

=1
N——

Property 4.2. (Monotonicity). Letn, = ((spj, 9, (5r5 (1)) and n’, = ((s;,j, 9, (s;_/, {;)) (Gg=12,...,n)
be two sets of 2TLq-ROFNs, if n, < n', for all j, then

2TLg-ROFHM™ (ny, 15, . . . ,v) < 2TLg-ROFHM®™ (17, 10}, . . . .11,

Proof. Let 1, = ((s,,9,),(s:,.) and 0/, = (5}, ). (5/,,£))) (7 = 1,2,...,m) be two sets of 2TLg-
ROFN:Ss, let

1
4\ ex
q K A_l(spj’?)]) e n
(Sp’ 80) = Alt 1 - 1—1 [1 _[ f
1<t <..<te<n J=1
L
K Afl(sr,é’]) q % q
o= o {e-Ee] |
1<t <..<ty<n J=1 T

given that (s, , ) < (s;,j, ); then

K -1 : K 1y N

[l—[A (s,,,,go») S[HA (sp,,gap] |
T T

J=1

Moreover,

EAN 4\ ¢cr
A s )| LAY |
1- — e > - —n 7 .
=) = oo -
1<t <..<t<n J=1 1<t <..<t<n J=1

Furthermore,
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q
" S ATy 9) |
A — — 7
SR
I<t)<..<te<n =1

: < A )|
<A 1-— | | _ | | _ hrr )
< T {1 [ =

1<t <..<t<n

J=1

Therefore, (s,, 9) < (s,, ¢'). Similarly, we can show that (s,,{) > (s, {").
Hence, 2TLg-ROFHM®“ (1,12, . . ., 1) < 2TLg-ROFHM® (7, 175, . .., 170). O

Property 4.3. (Boundedness). Let 1, = ((sp,,9,),(s,¢))( = 1,2,...,1) be a collection of 2TLq-
ROFNs, and let n~ = min ((sp,, 9,), (5,,,¢,) and n* = max,((s,,, 9,), (5,,,{,)); then

n~ < 2TLg-ROFHM™ (31,12, ..., 0) < 717"
From Property 4.1,
2TLq-ROFHM™ (77,15, ..., ) =1,
2TLg-ROFHM™ (nt,n},....n%) =n".
From Property 4.2,
n~ < 2TLg-ROFHM®(n,,my,. .., m0) < ™.

4.2. 2TLq-ROFWHM aggregation operator

The 2TLg-ROFHM aggregation operator does not show the weighting values of attributes in
Theorem 4.1. To overcome the constraints of the 2TLg-ROFHM operator, we shall introduce the
2TLg-ROFWHM operator with certain preferred features.

Definition 4.2. Let n, = ((s,,,9,),(s,,{)( = 1,2,...,1m) be a collection of 2TLg-ROFNs with
weighting vector @, = (@, @s,...,@,)", thereby satisfying @, € [0,1] and } @, = 1. The
J=1

2TLg-ROFWHM operator is a mapping 7" — T such that

1
Di<ti<..<te<n (®§:] (ntj)wf/);
Gy
Theorem 4.2. Using the 2TLq-ROFWHM operator, the aggregated value is likewise a 2TLg-ROFN
value, where

2TLg-ROFWHMY (1,12, ..., 1) = (4.3)

2TLg-ROFWHM® (1,12, . .., 11y)

N
q K A_I(SI, ,ﬁf)]) ’(D'r/ K n
A= 1 (1 —(n(+ :
1<t <..<t <n J=1

— o . 4.4)
ycy
K ~l(s q ‘ID(.] Kk
A r[ I (/1—(H(1‘(—A +2)) )]
1<t <..<te<n J=1
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Proof. By utilizing Definition 3.5, we get

o = (s ) a0 - (527 )

Then,
K s, ; @, K U5, L, g\ @,
&) = [ e (22) )A{\/l R () ] )
J=1 J=1
Thus,
@i L K (A1 \Zu % A s 2 \I\PY %
(& (m)™) = | A T(H(—‘;’/’pf) ) Al 1—(11(1_(_;]’»1)) ) .
J=1 J=1
Therefore,
691<t1<...<t,<<n( 5:] (ntx)mj);
o[- A== T)
_ 1<t <..<t,<n J=1
q K A—l(sr/’{/) q\ @t %
A{T1§t|<l:[<tK§n \/1 _(]:I—[l (l _( T ) ) ) ]
Furthermore,
2TLg-ROFWHMY (1,12, ... ., )
A le_ H (1_(ﬁ (A' (SI/WJ))W‘I)K) ‘],
I<tj<..<tesn =1
q K A (3 ) @ty % &
A 1-
[T[1<t1<l._..l<t,<<u\/ (]:I_II( ( T )) )) ]
m]
Property 4.4. (Monotonicity). Let n, = ((sp,»9)), (5,,,)) and 77] = ((sp],goj) (s, ,{))(] =1,2,...,n)

be two sets of 2TLq-ROFNs, if n, < 1), for all j, then
2TLg-ROFWHM® (1,1, . .. ,1w) < 2TLg-ROFWHM® (57, 175, . . ., 17.).

Property 4.5. (Boundedness). Let 1, = ((sp,,9,),(s,¢)) = 1,2,...,1) be a collection of 2TLg-
ROFNs, and let ™ = min((s,,, 9,), (s, £)) and 5" = max ((s,,, 9)), (s,,,{)); then

N~ < 2TLg-ROFWHME (1,72, ..., 1) < 77"
Idempotency is obviously not a feature of the 2TLg-ROFWHM operator.
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4.3. 2TLq-ROFDHM aggregation operator

In this subsection, we will augment the DHM operator with 2TLg-ROFS to propose the 2TLg-
ROFDHM operator for aggregating 2TLg-ROFNs, and also examine its desirable features.

Definition 4.3. Let 7, = ((s,,,9)),(s,{)( = 1,2,...,1) be a collection of 2TLg-ROFNs. The
2TLg-ROFDHM operator is a mapping 7" — T such that

®) EB§=]m! .
2TLg-ROFDHM™ (171,72, . . ., ) = | ®i<ty<...<te<n p . 4.5)

Theorem 4.3. The aggregated value by utilizing 2TLg-ROFDHM operator is also a 2TLg-ROFN,
where

2TLg-ROFDHM™ (11,12, . . ., 1)

A T[ I \/ H(l— A (Su%?ﬂ J
I<t;<..<te<n =1
= - #
AT‘II_ 1_[ [1—(HA (;rjgj))]
1<t <..<tg<n =1

Property 4.6. (Idempotency). If all n, = ((s,,,9,), (s, {0 = 1,2,...,n) are equal, for all j, then
2TLg-ROFDHM® (11,1, ..., 0) = 17

(4.6)

Property 4.7. (Monotonicity). Let n, = ((sp,,9,), (sr,{) and 7, = ((s;,J, o), (s;j, NG =12,...,m)
be two sets of 2TLq-ROFN, if n, < 17), for all j, then

2TLg-ROFDHM™ 1y, 3, . .., n) < 2TLg-ROFDHM™ (17, 105, . . ., 11.).

Property 4.8. (Boundedness). Let n, = ((s,,9,),(s,,{))( = 1,2,...,n) be a collection of 2TLq-
ROFNS) and let T]_ = min]((spja 8{)])’ (Srj7 gj)) and 77+ = maxj((spj’ 801), (Srja {j)); then

7~ < 2TLg-ROFDHM® (15, ...,m) < 1.

4.4. 2TLq-ROFWDHM aggregation operator

The value of the aggregated arguments is not taken into account by the 2TLg-ROFDHM operator,
as demonstrated in Theorem 4.3. However, in many real-life circumstances, particularly in MAGDM,
attribute weights play an important role in the aggregation process. The attributes’ values are omitted
by the 2TLg-ROFDHM operator. The 2TLg-ROFWDHM operator is proposed to overcome the
constraints of 2TLg-ROFDHM.

Definition 4.4. Let n, = ((s,,,9,),(s,,{)N( = 1,2,...,m) be a collection of 2TLg-ROFNs with
weighting vector @, = (@), @,...,@,)!, thereby satisfying @, € [0,1] and } w, = 1. The

J=1
2TLg-ROFWDHM operator is a mapping 7" — T such that

63]:17D.t]m] Ciﬁ
2TLg-ROFWDHMY (171,72, . .., 1) = [®1<t, <<t <n — - 4.7)
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Theorem 4.4. Using the 2TLqg-ROFWDHM operator, the aggregated value is likewise a 2TLg-ROFN
value, where

2TLg-ROFWDHM® (171,112, . . ., 11)

L\ Cq
K -1, 00 Y\l \ ¢
A T[ [1 {/1—(H(1—(_A (:J’“))) )] ;
1<t <..<t<n J=1

= . (4.8)

e
q K (A1 Gy, AR I
aledic 1—(H( (i,m) )
1<t <..<te<n =1

Property 4.9. (Monotonicity). Let 1, = (5, 9,). (5., £,)) and 1, = (s}, ,9). (1, £)). () = 1,2,....0)
be two sets of 2TLq-ROFNs, if n, < 17), for all j, then

2TLg-ROFWDHM® (171,12, . .., 1) < 2TLg-ROFWDHM® (7}, 175, . . ., 17,).

Property 4.10. (Boundedness). Let n, = ((sp,,9,),(s,,{N( = 1,2,...,m) be a collection of 2TLq-
ROFNS) and let 77_ = minj((sp]a 801), (S,/, {j)) and 77+ = maxj((spja 80])9 (S,-], {j)); then

n~ < 2TLg-ROFWDHM® (1,15, ..., m,) < 1.

Idempotency is obviously not a feature of the 2TLg-ROFWDHM operator.
5. MAGDM based on the maximizing deviation and CODAS method

This section gives a framework for calculating attribute weights and the ranking orders for all the
alternatives with incomplete weight information under 2TLg-ROF environment.

Suppose there are e alternatives R = {R|,R»,...,R.}, n attributes G = {G{,G,,...,G,}, and g
experts E = {0,0,,...,0,}, and let @ = (@, @s,...,@,)" and @’ = (w;,w’y...,w;)T be the
weighting vector of the attributes and weighting vector of the experts satisfying @, € [0, 1], @} € [0, 1],

g
Y@, =1,and El @) = 1, respectively.

5.1. Calculation of optimal weights utilizing maximizing deviation method

Case 1: Completely unknown information on attribute weights

To find the best relative weights for attributes G, € G, we build an optimization model based on the
maximizing deviation method in a 2TLg-ROF environment. The deviation of the alternative R; from
all other alternatives for the attribute can be expressed as:

e

Dy (@)= d(nm) (@), t=12.....e. y=1.2...n 5.1
k=1
where,
1
e e e R C Rl

(5.2)
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denotes the 2TLg-ROF ED between the 2TLg-ROFEs hy, and hy,.
Let

D/(w) = ZDU (@) = ZZw,d(m,,hkp J=12,. (5.3)

t=1 k=1
D ,(w) represents the deviation value of all alternatives to other alternatives for the attribute G, € G.

max D(w) = Z Z Z @ ,d(nt, hyy)
(M—1) J=11=1k=1
st.w,;20,7=1,2,...,1, Zw—l
J=1

In order to solve the above model, we consider

Liw, ) = Z Z Z @, d( i) + = (Z @’ - 1) (5.4)

=1 t=1 k=1

which represents the Lagrange function of the constrained optimization problem (M-1), where 7 is a
real number, denoting the Lagrange multiplier variable. Then the partial derivatives of L are calculated
as:

d(ny, hy)) + o, = (5.5
-

t=1 k=1

L 1
6_7:5(2135_1):0' (5.6)

aw]

It follows from Eq (5.5) that

, J=1,2,...,n (5.7)

Putting Eq (5.7) into Eq (5.6), we get

n e e 2
T=- J > (t d(m,,hkj)) : (5-8)

=1 \t=1 k=1

Obviously, T < 0, >, > d(n,, ht,) denotes the sum of all the alternatives’ deviations from the jth
t=1k=1

mn e e 2
attribute, and 4| > | X X d(my), I J)) denotes the sum of all of the alternatives’ deviations for all the
=1 \t=1 k=1

attributes. Then utilizing Eqgs (5.7) and (5.8), we get
t=1

il
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1
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M=
T
M=
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For the sake of simplicity,

Xo= ) > dyg ) J=1,2,..m (5.10)
t=1 k=1
Then the Eq (5.9) becomes
w,=—2L . =12 (5.11)
2 X
J=1
It is simple to verify that @ ,(; = 1,2,...,n) are positive and fulfill the constrained conditions in the
model (M-1) and that the solution is unique using Eq (5.11).
By normalizing @ ,(j = 1,2, ...,n), to let the sum of @, into a unit, we have
w
o= =X o2 (5.12)

T on n
)y w, )y X
J=1 J=1

Case 2: Partly known information on attribute weights

In some cases, the weighting vectors’ information is only partially known rather than completely
unknown. In these cases, the constrained optimization model can be designed as follows, based on the
set of weight’s information that is known, ¥

mn e e
max D(@) = 3, 3 ¥ @,d(my, he))
(M —2) =li=1k=1 )
st. we¥, w,20,;)=1,2,...,n, Y@, =1
J=1

where ¥ also refers to a collection of restriction constraints that the weight value @, should satisfy in
order to fulfil the requirements in real-world scenarios. A linear programming model (M — 2) is used.
We acquire the best solution @ = (@, @, ..., @,)’, by solving this model, which can be used as the
weighting vector for the attributes.

5.2. CODAS approach for MAGDM under 2TLg-ROF environment

In this subsection, we present a new approch to deal with MAGDM problems, known as 2TLg-
ROF-CODAS model based on 2TLg-ROFWHM and 2TLg-ROFWDHM operators by considering the
flexibility of 2TLg-ROFNs. The preference of alternatives is calculated using two measures in this
method. The largest and the most important measurement is the ED between alternatives and the
negative-ideal solution (NIS), and the second measure is the HD. It is clear that the alternative which
has greater distance from the NIS is more preferable. The ED and HD measures are used for the relative
assessment (RA) of alternatives in order to construct the RA based matrix to fuse the information. The
technique of implementing the 2TLg-ROF-CODAS approach is described in the following steps:

Step 1. Switch the linguistic information into 2TLg-ROFNs nfj = (st g)f]), (S,¢ {f; NE=1,2,...9).
J J

Step 2. According to 2TLg-ROFNs nfj = (st » of D (5 {f;))({’ =1,2,...g) and by utilizing Eqs (4.3)
and (4.7), independent panel evaluations can be combined to form the fused 2TLg-ROFNs matrix
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Ty = ((Spt_p XOU)7 (Sry_,a {t]))-

i M2 ... N

M1 M2 ... N
F= [nt]]exn = . . . .

Het MNe2 -+ MNen

Step 3. Calculate the weighted 2TLg-ROFNs matrix as follows:
ly = @,; @1,

where @, is the attribute weight of G,, and 0 < @, < 1, Z?:l @, = 1.

(5.13)

(5.14)

Step 4. Calculate the NIS by using 2TLg-ROFNs’ score function. If the score function is similar, the

accuracy function is used to rank the 2TLg-ROFNss:

NIS = [NIS lixn;
NIS | = mtinS(tU).
Step 5. Calculate the weighted ED; and HD; as follows:

EDy = ) ED(t,NIS );
=1

HD, = ) HD(t,, NIS ).
J=1

Step 6. In the following equations, build the relative assessment matrix RA:

RA = [ht[]exe 5

hy = (EDy — EDy) + (§(ED; — ED¢) X (HD; — HDy)),

where € € {1,2,3,..., g} and g denotes a significant function that could be designed:

(1 if 829
9(9)‘{0 ifle <9

where J € [0.01,0.05] specified by DMs. Here, 3 = 0.02.

Step 7. Derive the average solution (£;) by using:

£t = i ht[.
t=1

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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Step 8. On the basis of computing outcomes of £;, all the alternatives can be ranked. The best option
has the highest evaluation score.

The scheme of the developed approach for MAGDM problems is shown in Figure 1.

Phase 1: Obtain the assessment information

collective one utilizing 2TLg-ROFWHM (2TLg-
ROFWDHM) operator

Construct each decision- Aggregate the individual decision matrices into a
maker’s decision matrix

@

Phase 2: Determine the attribute weights utilizing Maximizing deviation method

Case 1: The information about the attribute Case 2: The information about the attribute
weights is completely unknown weights is partly known

U

Phase 3: Determine the ranking results utilizing CODAS method

{ A { 4 N
Calculate weighted Determine negative Calculate alternative”
normalize matrix ideal solution (NIS) distance from NIS

\, J \. e J

( N 4 4 ) ] X
Rank all alternatives Calculate each Determine relative
and select optimal one alternative’s assessment assessment matrix

\ J . \, J

Figure 1. The scheme of the developed approach for MAGDM.

N

6. Numerical example: Case study

Robotic welding is the most visible manifestation of current welding technology. The first
generation robotic welding systems used a two-pass weld method, with the first pass committed to
learn the seam geometry and the second pass committed to track and weld the seam. The second
generation of robotic welding systems came with the technological advancements , which tracked the
seam in real-time while learning and seam-tracking at the same time. Third-generation robotic
welding systems are the most advanced in robotic welding technology, as they not only function in
real-time but also understand the quickly changing geometry of the seam while operating in
unorganized situations. Higher product quality criteria should drive it at a lower cost and generate a
dependable weld, according to the selection of industrial arc welding robots. Weight density,
replicability, freight capacity, maximum reach, Average power consumption, and Motion of a robot
are some of the characteristics that can be used to characterize robots. All of these aspects must be
taken into account when choosing robots for a certain application. The most prevalent type of robot in
industrial robotic arc welding is one with a revolute (or jointed arm) arrangement, which is based on
the workspace geometry. The CODAS approach is used to investigate the selection of industrial
robots for arc welding operations in this study. The data for arc welding robots was gathered to apply
nine distinct robots with six controllable axes and varied controllers from their manufacturers. Six
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attributes are assigned to these nine robots. After looking over several datasheets offered by robot
manufacturers to describe their goods, the selection criteria were evaluated. The opinions of industry
professionals are also taken into account. The selection criteria were decided after a discussion
between the research group and an industry specialist. The final decision matrix was reviewed using
the joint decision of both groups, and the significant traits possessed by each robot were used as
criteria for evaluation.The following are the six important attributes shown in Table 1 to consider
while choosing an arc welding robot:

Table 1. Description of evaluation attributes.

Criterion Explanation

Weight density This criterion takes into account the
physical weight of the robot. In general,
consumer chooses a lighter robot. The
weight density is usually expressed in kg
(G).

Replicability This refers to a robot’s ability to
repeat a task over and over again.
More replicability is often preferred.
Replicability is usually measured in
millimeters (G,).

Freight capacity The highest total weight a robot can lift in
one turn is referred to as freight capacity.
Being more is often preferred. The weight
density is usually expressed in kg (G3).

Maximum reach This is the average of the maximum
vertical and horizontal distances a robot’s
arm can extend to complete a task. It is
common to want to be more. The robot’s
maximum reach is typically measured in
millimeters (Gy).

Average power consumption It refers to the robot’s average power
consumption in units of electricity. It is
often desirable that a robot consumes less
energy. The robot’s power consumption
is usually measured in kilowatts (Gs).

Motion of a robot The motion of a robot at a reference
point near the end effector’s tip is referred
to as robot motion. Trajectory, speed,
acceleration, and acceleration derivative
are commonly used to describe robot
motion. The robot’s motion is usually
expressed in ms~! or ms=2 (Gg)
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Comprehensive above, the set of nine alternatives R = {R}, R, ... Ro} is evaluated by four experts
E = {0, 0,, 03, 04} which consists of experienced engineers and customers in evaluation stage having
weights @’ = (0.19,0.31,0.17,0.33). The four experts use the six attributes shown in Table 2 to select
the best alternatives for additive manufacturing of linear delta robot.

The linguistic variables of 2TLg-ROFNs are recorded in Table 3.

Establish the 2TLg-ROF evaluation matrix F, = [nfj]gx(,({’ = 1,2,3,4,5,6) in Table 4 based on
linguistic variables listed in Table 3, which are the assessments of four DMs.

Transformation of the linguistic decision matrix given in Table 4 into 2TLg-ROF decision matrix
shown in Table 5.

Table 2. Attributes their symbols and units.

Sr. No. Criteria Units Symbol
1 Weight density Kg G,
2 Replicability (+/—)mm G,
3 Freight capacity Kg G;
4 Maximum Reach mm Gy
5 Average Power Consumption KW Gs
6 Motion of a robot ms™>2 Ge

Table 3. Linguistic variables and 2TLg-ROFNs.
Linguistic variables 2TLg-ROFNs

Certainly high value (CHV) ((ss,0), (s0,0))
Very high value (VHV) ((s7,0), (s1,0))

High value(HV) ((56,0), (52,0))
Above average value (AAV) ((ss5,0), (s3,0))
Average vlaue (AV) ((84,0), (54,0))
Under average value (UAV) ((s3,0), (s5,0))
Low value (LV) ((s52,0), (56,0))

Very low value (VLV) ((s1,0), (s7,0))
Certainly low value (CLV)  ((s9,0), (s3,0))
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Table 4. Linguistic assessing matrix by four decision makers.

Experts Alternatives Attributes
G, G Gs Gy Gs Gs
0,
R, AV LV VHV VLV CLV CHV
R, HV  UAV CLV AAV VHV LV
R; VHV VLV CHV HV  UAV CLV
Ry CLV  AAV LV VHV VLV  AAV
Rs CHV  HV UAV CLV LV AV
Rs LV  VHV VLV CHV AV HV
R; UAV  CLV AAV AV HV VLV
Rg AAV AV HV UAV CHV VHV
Ry VLV  CHV AV LV  AAV UAV
0,
R, VLV AV HV UAV LV  CHV
R, LV  VHV VLV CHV CLV AAV
R; AV HV UAV CLV AAV VHV
Ry CLV  AAV LV VHV VLV  UAV
Rs VHV VLV CHV HV UAV AV
R HV  UAV CLV AAV AV LV
R; AAV LV VHV AV  CHV CLV
Rg UAV CHV AV LV  VHV VLV
Ry CHV CLV AAV VLV  HV AV
0;
R, AV UAV LV AAV HV VLV
R, LV  VHV AV HV  UAV AAV
R; VHV VLV CHV AV LV UAV
R4 CHV AV UAV VLV AAV  HV
Rs HV  CHV VLV UAV CLV VHV
R AAV LV CLV CHV VLV AV
R; CLV  AAV HV VHV AV CHV
Ry VLV  HV VHV CLV CHV LV
Ry UAV  CLV AAV LV VHV CLV
on
R, CHV LV UAV AV AAV HV
R, LV HV CLV UAV CHV AAV
R; UAV  VHV CHV HV VLV CHV
Ry AV AAV VLV CLV  HV LV
Rs VLV  CLV AV LV  VHV UAV
R AAV  CHV LV VLV CLV AV
R; VHV VLV AAV CHV AV  VHV
Rg HV AV VHV AAV  UAV VLV
Ry CLV  UAV HV VHV LV CLV
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Table S. The assessing matrix with 2TLg-ROFNs.

Experts  Alternatives Attributes
G, G, Gs Gy Gs Gs

0,
R, ((54,0),(54,0))  ((52,0),(56,0))  ((57,0),(51,0))  ((51,0),(57,0))  ((50,0),(s55,0))  ((s3,0),(50,0))
Ry ((56,0),(52,0))  ((53,0),(s55,0))  ((50,0),(55,0))  ((55,0),(53,0))  ((57,0),(51,0))  ((52,0),(s6,0))
Rs ((57,0),(51,0))  ((51,0),(57,0))  ((55,0),(50,0))  ((55,0),(52,0))  ((53,0),(55,0))  ((50,0),(s3,0))
Ry ((50,0),(55,0))  ((55,0),(53,0))  ((52,0),(56,0))  ((57,0),(51,0))  ((51,0),(57,0))  ((s5,0),(s3,0))
Rs ((58,0),(50,0))  ((56,0),(52,0))  ((53,0),(55,0))  ((5,0),(55,0))  ((52,0),(56,0))  ((54,0),(s4,0))
Rs ((52,0),(56,0))  ((57,0),(51,0))  ((51,0),(57,0))  ((55,0),(50,0))  ((54,0),(54,0))  ((56,0),(s2,0))
R; ((53,0),(55,0))  ((50,0),(53,0))  ((55,0),(53,0))  ((54,0),(54,0))  ((56,0),(52,0))  ((51,0),(s7,0))
Ry ((55,0),(53,0))  ((54,0),(54,0))  ((56,0),(52,0))  ((53,0),(55,0))  ((55,0),(50,0))  ((57,0),(s1,0))
Ro ((51,0).(57,0))  ((53,0),(50,0))  ((54,0),(52,0))  ((52,0),(5,0))  ((55,0),(s53,0))  ((s3,0),(s5,0))

0,
Ry ((51,0),(57,0))  ((54,0),(54,0))  ((56,0),(52,0))  ((53,0),(55,0))  ((52,0),(56,0)) (53,0, (50,0))
R, ((52,0),(56,0))  ((57,0),(51,0))  ((51,0),(57,0))  ((55,0),(50,0))  ((50,0),(s55,0))  ((s5,0),(s3,0))
R; ((54,0),(54,0))  ((56,0),(52,0))  ((53,0),(55,0))  ((5,0),(55,0))  ((55,0),(53,0))  ((57,0),(s1,0))
Ry ((50,0),(55,0))  ((55,0),(53,0))  ((52,0),(56,0))  ((57,0),(51,0))  ((51,0),(57,0))  ((s3,0),(s5,0))
Rs ((57,0),(51,0))  ((51,0),(57,0))  ((s3,0),(50,0))  ((55,0),(52,0))  ((53,0),(s55,0))  ((54,0),(s4,0))
Rs ((56,0),(52,0))  ((53,0),(s55,0))  ((50,0),(s5,0))  ((55,0),(53,0))  ((54,0),(54,0))  ((52,0),(s6,0))
R, ((55,0),(53,0))  ((52,0),(56,0))  ((57,0),(51,0))  ((54,0),(54,0))  ((55,0),(50,0))  ((50,0), (s3,0))
Rg ((53,0),(55,0))  ((53,0),(50,0))  ((54,0),(54,0))  ((52,0),(5,0))  ((57,0),(51,0))  ((51,0),(s7,0))
Ry ((55,0),(50,0))  ((50,0),(s53,0))  ((55,0),(53,0))  ((51,0),(57,0))  ((56,0),(52,0))  ((54,0),(s4,0))

X
R, ((54,0),(54,0))  ((53,0),(55,0))  ((52,0),(56.0))  ((55,0),(53,0))  ((86,0).(52,0))  ((51,0),(s7,0))
Ry ((52,0).(56,0))  ((57,0),(51,0))  ((54,0),(54,0))  ((55,0),(52,0))  ((53,0).(55,0))  ((s5,0),(s3,0))
R; ((57,0),(51,0))  ((51,0),(57,0))  ((55,0),(50,0))  ((54,0),(54,0))  ((52,0),(56,0))  ((s3,0),(s5,0))
Ry ((55,0),(50,0))  ((54,0),(54,0))  ((53,0),(55.0))  ((51,0),(57.0))  ((55,0),(s53,0))  ((56,0),(s2,0))
Rs ((56,0),(52,0))  ((58,0),(50,0))  ((51,0),(57.0))  ((53,0),(55,0))  ((50,0).(s55,0))  ((57,0),(51,0))
Rs ((55,0),(53,0))  ((52,0),(56,0))  ((50,0),(55.0))  ((55,0),(50,0))  ((51,0).(57,0))  ((54,0),(s4,0))
R ((50,0),(58,0))  ((55,0),(53,0))  ((56,0),(52,0))  ((57,0),(51,0))  ((54,0),(54,0))  ((s3,0),(50,0))
Ry ((51,0),(57,0))  ((56,0),(52,0))  ((57,0),(51,0))  ((50,0).(55.0))  ((55,0),(50,0))  ((52,0), (56, 0))
Ro ((53,0),(55,0))  ((50,0),(s53,0))  ((55.0),(53.0))  ((52,0).(5,0))  ((57,0),(51,0))  ((50,0).(s3,0))

0,
R ((55,0),(50,0))  ((52,0),(56,0))  ((53,0),(55,0))  ((54,0),(55,0))  ((55,0),(s53,0))  ((36,0),(s2,0))
R, ((52,0),(56,0))  ((56,0),(52,0))  ((50,0),(s5,0))  ((53,0),(55,0))  ((55,0),(50,0))  ((s5,0),(s3,0))
Rs ((53,0),(55,0))  ((57,0),(51,0))  ((3,0),(5,0))  ((55,0),(52,0))  ((51,0),(57,0))  ((s3,0),(50,0))
Ry ((54,0),(54,0))  ((55,0),(53,0))  ((51,0),(57,0))  ((5,0),(55,0))  ((86,0),(52,0))  ((52,0),(s6,0))
Rs ((51,0),(57,0))  ((50,0),(53,0))  ((54,0),(54,0))  ((52,0),(5,0))  ((57,0),(51,0))  ((s3,0),(s5,0))
Rs ((55,0),(53,0))  ((53,0),(50,0))  ((52,0),(5,0))  ((51,0),(57,0))  ((50,0),(s55,0))  ((54,0),(s4,0))
R; ((57,0),(51,0))  ((51,0),(57,0))  ((55,0),(s3,0))  ((55,0),(50,0))  ((54,0),(54,0))  ((57,0),(s1,0))
Ry ((56,0),(52,0))  ((54,0),(54,0))  ((57,0),(51,0))  ((55,0),(53,0))  ((53,0),(s55,0))  ((51,0),(s7,0))
Ry ((50,0),(55,0))  ((53,0),(s55,0))  ((56,0),(52,0))  ((57,0),(51,0))  ((52,0),(56,0))  ((50,0), (s3,0))

6.1. Results of the case study

6.1.1. Decision-making procedure based on the 2TLg-ROFWHM operator

The MAGDM technique to select best arc welding robot involves the following cases:

Case 1: Assume that the information about the attribute weights is completely unknown: Utilize the
Eq (5.12) to get the optimal weight vector @ = (0.1574,0.1881,0.2079, 0.1398,0.1449,0.1619).

Step 1. Individual expert assessments can be integrated into the collective assessing matrix with 2TLg-
ROFNSs, according to Tables 4 and 5 and Eq (4.3) (¢=4 and x=3) (see Table 6).
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Table 6. Combined assessing matrix with 2TLg-ROFNs utilizing 2TLg-ROFWHM operator.

G Gy G;
Ry ((57,=03891), (52, =02277)) _ ((s6,0.0997), (53, =0.0756)) (57, —0.1963), (55, 0.2730))
Ry  ((s6,0.0081), (s4,0.1537)) ((57,0.3642), (s5,,0.1177)) ((50,0), (s3,0))
R;  ((s7,—0.0292), (s3,—-0.1356))  ((s6,0.4762), (s54,0.1480)) ((s3,0), (50,0))
R, ((50,0),(s3,0)) ((s7,0.0485), (s2,0.2979)) ((s5,0.4993), (55, —0.3450))
Rs  ((57,0.0101),(s3.0.0473))  ((s5.-0.3156).(s7,~0.1305))  ((s7.~0.3557), (54, —0.3383))
Re  ((s7,—0.0726), (s3,—0.1504))  ((s7,0.0101), (s3,0.2390)) (50, 0), (s3,0))
R7  ((s5,0.3996), (s¢,0.0833)) ((s4,—0.1232), (s7,0.0370)) ((s7,0.3708), (52, —0.1898))
Rg  ((s7,—0.4816), (s4,-0.3182))  ((s7,0.2618), (s,,0.3874)) ((57,0.3997), (52, —0.1125))
Ry ((s5,—0.0390), (s7,—0.2683))  ((s0,0), (s3,0)) ((s7,0.1479), (s5,,0.1867))
Gy Gs Gs
R, ((s6,0.2466), (54, —0.1424)) ((s5,—0.1877), (s7,-0.4491))  ((s7,0.2954), (s3,—0.1998))
R, ((s7,0.2201), (53, —0.4669)) ((s6, —0.0280), (56, —0.0258))  ((s7, —0.1752), (53, —0.0620))
Ry ((s6,—0.2876), (56, —0.3069))  ((s6,—0.0466), (54, —0.2966))  ((s6, —0.0874), (56, —0.0255))
Ry ((55,0.2866), (57, ~0.3760))  ((s6,0.0168), (s5,0.4795)) (56, 0.4588), (55, —0.4168))
Rs  ((ss5,—0.3423),(s7,-0.3634))  ((s5,—0.1427), (s7,—0.4539))  ((s7,—0.2352), (53, —0.0154))
Rs  ((s7,—0.1643),(s3,0.4871)) ((s5,—-0.3171),(s7,-0.2974))  ((s7,—-0.4421), (s3,0.3799))
R7  ((s7,0.3384), (s5,,0.3524)) ((s7,0.2766), (52, —0.3623)) ((s5,0.2401), (s7,-0.3311))
Rs  ((s5,—0.4488), (57, —0.3605))  ((s7,0.4941, (s5,,-0.0552)) ((s5,0.4849), (55, —0.1040))
Ro  ((56.0.0488). (54.03846))  ((s7.0.0848), (s3.~0.0375))  ((s0.0).(s5.0))

Step 2. Determine the weighted assessing matrix with 2TLg-ROFNs using Eq (5.14) (see Table 7).

Table 7. Combined weighted assessing matrix with 2TLg-ROFNSs.

G, G, G;
Ri ((55,0.0539), (s5,—-0.0285))  ((s5,—0.2441), (55,—0.3317)) (57, -0.4061), (52, —0.2107))
R, ((s5,0.4486), (s5,0.2840)) ((s7,0.0878), (s3,—-0.0722)) ((s9,0), (s3,0))
R;  ((s6,0.4378), (54,0.1766)) ((s6,0.1349), (55, —0.1320)) ((s3,0), (59, 0))
Ry ((s9,0),(sg,0)) ((s7,-0.2648), (s3,0.1142)) ((s5,0.2848), (s5,0.0870))
Rs  ((s6,0.4812), (54,0.3434)) ((s4,0.3848), (s57,0.1293)) ((s6,0.4298), (s4,0.1621))
Rs  ((s6,0.3903), (54, 0.1630)) ((s7,-0.3064), (s4,0.0374)) (59, 0), (53, 0))
Ry ((s5,—0.1340), (s7,0.2730)) ((s4,—0.3785), (s7,0.2604)) ((s7,0.1988), (s,,0.3094))
Rg  ((s6,—0.0415), (s5,—0.1043))  ((s7,—-0.0291), (s3,0.2056)) ((s7,0.2309), (s,,0.3916))
Ry ((54,0.4567), (s7,0.1722)) ((59,0), (53, 0)) ((s7,—-0.0436), (s3,—0.2953))
Ga Gs G
R ((s6,—0.4600), (s55,0.3085))  ((s4,0.2348), (s57,0.12006)) ((s7,—-0.1581), (s4,0.0392))
Ry,  ((s7,-0.4190), (s4,0.1904))  ((s5,0.3148), (s7,-0.2517))  ((ss,0.3139), (s4,0.1675))
R;  ((s5,0.0255), (57,—0.3929))  ((s5,0.2969), (56, —0.4309)) ((s5,0.3897), (s7,—0.3847))
Ry ((s5,—0.3703), (57,0.1945))  ((s5,0.3582), (56, —0.2940)) ((s6,—0.0676), (s, — 0.2575))
Rs  ((s4,0.0599), (s57,0.2022)) ((s4,0.2756), (s7,0.1176)) ((s6,0.2501), (84,0.2387))
Rs  ((56,0.1459), (55,0.0155))  ((54,0.1177), (57,0.2162)) ((s6,0.0339), (55, —0.4345))
Ry ((57,—0.2744), (54,0.0196))  ((s7,—0.3088), (54, —0.0700))  ((s5,—0.2523), (s7,0.1062))
Rg  ((54,—0.0354), (57,0.2039))  ((s7,—0.0325), (s4,-0.4910))  ((s5,—0.0211), (56, —0.1888))
Ry ((s5,0.3467), (s6,—0.2952))  ((s6,0.2762), (s54,0.4843)) (59, 0), (53, 0))
AIMS Mathematics
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Step 3. Calculate the NIS by Eq (5.16).

NIS

= {((S(), O)’ (SS’ O))7 ((SO’ O)’ (SS’ 0))’ ((SO? 0)’ (s87 O))? ((S4’ _00354)’ (S7’ 02039))

((54,0.1177), (57,0.2162)), ((50, 0), (53, 0))}.

Step 4. Calculate the HD; and ED;:

HD, = 2.9440, HD, = 2.5988, HD; = 3.0646, HD, = 2.1374, HDs = 2.2474,

HDg =2.3838, HD; = 2.6034, HDg = 3.1897, HDg = 1.7095.

ED, =3.5009, ED, =2.9797, ED; = 3.4908, ED, = 2.6627, EDs = 2.6899,

EDg¢ =2.7760, ED; = 2.9501, EDg = 3.6246, EDg = 1.9711.

Step S. Determine the RA matrix (see Table 8).

Table 8. Relative assessment matrix (RA).

R, R, R; Ry Rs Rs Ry Rg Ry
R, 0 0.8665 0.0101 1.6448 1.5077 1.2851 0.8915  -0.3694 2.7643
R, —0.8665 0 -0.9769  0.7783 0.6413 0.4187 0.0251 -1.2359 1.8979
R; -0.0101  0.9769 0 1.7553 1.6182 1.3956 1.0020  -0.2589 2.8748
R, -1.6448 -0.7783 —1.7553 0 -0.1371  -0.3597 -0.7533 -2.0142 1.1195
Rs -1.5077 -0.6413 -1.6182 0.1371 0 -0.2226 -0.6162 -1.8771 1.2566
R¢ —-1.2851 -0.4187 -1.3956  0.3597 0.2226 0 -0.3936 —-1.6545 1.4792
R; -0.8915 -0.0251 -1.0020  0.7533 0.6162 0.3936 0 -1.2609  1.8728
Ry 0.3694 1.2359 0.2589 2.0142 1.8771 1.6545 1.2609 0 3.1337
Ry -2.7643 -1.8979 -2.8748 -1.1195 -1.2566 —-1.4792 -1.8728 -3.1337 0

Step 6. Derive the £; by using Eq (5.22). The results of £; are as follows:

£, =8.6007, £, = 0.6820, £5 = 9.3537, £, = —6.3231, £5 = -5.0894,
£6 = —3.0861, £7 = 0.4563, £5 = 11.8046, £9 = —16.39873.

Step 7. On the basis of computing results of £;, all the alternatives can be ranked. The ranking of
alternatives is as follows:

Ry >R;3 >Ry >R, >R; > R¢>R5 > R4 > Ro.

So, Ry is the best alternative.

Case 2: The weights of attributes are partly known, and the information of known weights is as follows:

AIMS Mathematics
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¥ =

6
0.3 < @5 <045, 009 <@ <0.13, > @, =1},

J=1

{0.15 <@ £0.2, 0.16 < @, <0.18, 0.05 < w3 <0.15, 0.25 < w4y < 0.35,

To construct the single-objective model, utilize the model (M-2) as follows:

(M -2)

max D(w) = 17.5771w; + 21.0079w, + 23.2248w; + 15.6182w, + 16.1851w5 + 18.0836wy
6
st. we¥,w,20,j=1,2,...,6, Y w, =1

We

obtain

J=1

the optimal

weighting vector

@ = (0.1500, 0.1600, 0.0500, 0.2500, 0.3000, 0.0900)" .

by solving this model

Step 1. Determine the weighted assessing matrix with 2TLg-ROFNs using Eq (5.14) (see Table 9).

Table 9. Combined weighted assessing matrix with 2TLg-ROFNSs.

G, G, G;
Ry ((s4,0.3805), (s7,0.1469)) ((s4,0.0216), (57,0.1384)) ((s3,0.4930), (55, —0.3496))
Ry  ((s4,—-0.1115), (s7,0.2509)) ((s5,0.2350), (56,0.4675)) ((50,0), (s3,0))
Ry ((ss5,—0.2826), (s7,—0.1423))  ((s4,0.3307), (s7,0.2019)) ((s3,0), (50,0))
Ry ((50,0), (s3,0)) ((ss,—0.1305), (s7, —0.4475))  ((s3,—0.3221), (s3, —0.2137))
Rs  ((ss,—0.2428),(s7,—0.0783))  ((s3,0.0013), (s3,—0.1927)) ((s3,0.3777), (s, —0.3066))
Rs  ((s5,—-0.3257), (s7,—-0.1476))  ((s5,—0.1706), (57, —0.0775))  ((s0,0), (53, 0))
R;  ((s3,0.4426), (s5,—0.3220)) ((s52,0.4665), (s3, —0.1625)) ((s4,0.0118), (s7,0.4271))
Rs  ((s4,0.3003), (s7,0.1209)) ((ss,0.1080), (57, —0.4073)) ((s4,0.0193), (s7,0.4427))
Ry ((s3,0.1395), (s5,0.2045)) ((50,0), (s3,0)) ((s4,—0.2276), (s7,0.4976))
Gy Gs Ge
Ry ((s5,—0.3960), (s7,—0.3335))  ((s4,—0.3952), (55, —0.4655))  ((s5,—0.4962), (s7,0.2788))
R, ((s6,—0.4103), (s6,0.0011)) ((ss5,—0.4401), (57, 0.3290)) ((s4,0.0492), (57,0.3103))
Ry ((s4,0.1512),(s7,0.3477)) ((ss5,—0.4562), (57, —0.3610))  ((s3,0.3673), (s5, —0.2075))
Ry ((s4,—0.1886), (53, —0.3687))  ((s5,—0.4008), (57, —0.2775))  ((s4, —0.2445), (s57,0.4421))
Rs  ((s3,0.3309), (s3,—0.3651)) ((s4,—0.3597), (53, —0.4672))  ((s4,—0.0015), (s7,0.3274))
Rs  ((s5,0.1621), (s7,—-0.4997)) ((54,—0.4967), (53, —0.4136))  ((s4,—0.1684), (s7,0.4031))
R;  ((s6,—0.26006), (s6,0.1089)) ((sg, —0.1166), (56, —0.4517))  ((s3,—0.0639), (53, —0.1300))
Rg  ((s3,0.2513), (s, —0.3643)) ((s6,0.1821), (s5,0.2339)) ((s3,0.0888), (s5, —0.3458))
Ry ((s4,0.4321), (s7,—0.1166)) ((s5,0.4627), (s6,0.0617)) ((s0,0), (s3,0))

Step 3. Calculate the NIS by Eq (5.16).

NIS

AIMS Mathematics

= {((50,0), (53,0)), ((50,0), (55, 0)), ((50, 0), (53, 0)), (54, =0.0354), (57, 0.2039))
((s4,0.1177), (s7,0.2162)), ((s0, 0), (55, 0))}.
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Step 4. Calculate the HD; and ED;.

HD, =2.9440, HD, = 2.5988, HD; = 3.0646, HD, = 2.1374, HDs = 2.2474,
HDg =2.3838, HD; =2.6034, HDg = 3.1897, HDg = 1.7095.

ED, =3.5009, ED, =2.9797, ED; = 3.4908, ED, = 2.6627, EDs = 2.6899,
EDg =2.7760, ED; = 2.9501, EDg = 3.6246, EDg = 1.9711.

Step 5. Determine the RA matrix (see Table 10).

Table 10. Relative assessment matrix (RA).

R R, R, Ra Rs Re R, Ry Ry
R 0 0.8665 00101  1.6448 15077 12851 08915 —0.3694 2.7643
R, —0.8665 0 -09769 0.7783  0.6413  0.4187  0.0251 -1.2359 1.8979
Ry -0.0101  0.9769 0 17553  1.6182 13956  1.0020 —0.2589 2.8748
R, —1.6448 -0.7783 —1.7553 0 ~0.1371 -0.3597 -0.7533 -2.0142 1.1195
Rs -15077 -0.6413 -1.6182 0.1371 0 02226 -0.6162 -1.8771 1.2566
Rs -12851 -0.4187 -13956 03597  0.2226 0 -0.3936 -1.6545 1.4792
R, -0.8915 -0.0251 -1.0020 0.7533  0.6162  0.3936 0 ~-1.2609 1.8728
Ry 03694 12359 02589 20142 18771  1.6545  1.2609 0 3.1337

Ry -2.7643 -1.8979 -2.8748 -1.1195 -1.2566 —-14792 -1.8728 -3.1337 0

Step 6. Derive the £; by using Eq (5.22). The results of £, are as follows:

£, =8.6007, £, = 0.6820, £3 = 9.3537, £, = —6.3231, £5 = —-5.0894,
£6 = —3.0861, £; = 0.4563, £3 = 11.8046, £, = —16.3987.

Step 7. On the basis of computing results of £;, all the alternatives can be ranked. The ranking of
alternatives is as follows:

Rg>R; >Ry >R, >R;>R¢>R5 >Rs > Ro.
So, Ry is the best alternative.

6.1.2. Decision-making procedure based on the 2TLg-ROFWDHM operator

The MAGDM technique to select best arc welding robot involves the following cases:

Case 1: Assume that the information about the attribute weights is completely unknown: Utilize the
Eq (5.12) to get the optimal weight vector @ = (0.1574,0.1881,0.2079, 0.1398, 0.1449,0.1619)" .

Step 1. Individual expert assessments can be integrated into the collective assessing matrix with 2TLg-
ROFNSs, according to Tables 4 and 5 and Eq (4.7) (¢g=4 and x=3) (see Table 11).
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Combined assessing matrix with 2TLg-ROFNs utilizing 2TLg-ROFWDHM

operator.
G, G, Gs
Ri  ((s6,—0.0961), (s6,—0.3603))  ((s2,0.1718), (s7,0.1783)) ((54,0.0624), (s6,0.2396))
R,  ((s3,—-0.3998), (s7,0.0990)) ((ss,—0.2385), (s5,0.4972)) ((s1,0.4422), (sg,—0.2737))
R;  ((54,0.2422), (s6,0.0676)) ((s54,0.3482), (s56,0.1491)) ((s3,0), (50,0))
Ry ((s6,—0.1292), (56, —0.1601))  ((s3,0.4843), (s6,0.3538)) ((s2,—-0.4878), (s57,0.4843))
Rs  ((s7,-0.0444), (54,0.2884)) ((s6,0.3337), (56, —0.4017)) ((s6, —0.0684), (55, —0.4954))
R ((s1,—0.2807), (ss,0.3164))  ((s7,~03151),(s5,-0.0977))  ((s1,-0.0599), (s, —0.2005))
R7  ((54,0.0689), (s6,0.2841)) ((s2,0.0635, (57, 0.4490)) ((s54,0.4322), (56, —0.2882))
Rg  ((s3,0.4526), (s7,—-0.3928)) ((s6,0.4542), (s5,-0.110)) ((s5,—0.2896), (56, —0.4666))
Ry ((s5,0.2397), (s56,0.3559)) ((s5,0.3566), (s6,0.1203)) ((54,—-0.2063), (s56,0.1743))
Gs G: Ge
R;  ((s3,-0.2832),(s7,—-0.0381))  ((s3,0.2726), (57, —0.1462)) ((s3,0), (50,0))
R,  ((s6,0.4719), (s5,-0.0714)) ((s7,-0.3232), (55, —0.1548))  ((s3,0.3950), (s6,0.4988))
Ry ((s4,-0.2593), (s7,-0.4324))  ((s3,—0.4913), (57, 0.1456)) ((s7,-0.1266), (55, —0.3632))
Ry ((54,0.4649), (s6,0.3020)) ((s3,0.3650), (s7,—-0.1510)) ((s3,0.1467), (s7,—-0.2130))
Rs  ((s3,—0.0851),(s7,0.0082))  ((s3,~0.4871),(s7,~0.3113))  ((s4,-0.4392), (s5,0.4802))
Re  ((s3,0), (50,0) ((s52,0.3524), (s7,0.3384)) ((s3,0.1466), (s7,—0.2670))
R;  ((s7,-0.2974), (s5,-0.3171))  ((s6,0.4789), (55, —0.1396)) ((s7,—0.1059), (s5,—0.3389))
Rg  ((s3,—0.4455), (s7,0.1303)) ((s3,0, (50,0) ((s3,—-0.2232), (s7,0.1423))
Ry ((s3,0.1835), (s7,0.1663)) ((54,0.1105), (s56,0.1671)) ((52,0.1042), (s7,0.4790))

Step 2. Determine the weighted assessing matrix with 2TLg-ROFNs (see Table 12).

Table 12. Weighted assessing matrix with 2TLg-ROFNSs.

G

G2

Gs

R  ((s7,—0.3993), (s5,0.0934)) ((s3,-0.0159), (s7,-0.1225))  ((s5,—0.4604), (s6,0.0193))
R, ((s4,—0.0714), (s7,-0.4190))  ((s5,0.4034), (s5,0.1645)) ((s2,-0.0902), (sg,—0.3910))
R;  ((s5,0.3549), (56, —0.4932)) ((s5,0.0447), (56, —0.1950)) ((s3,0), (59, 0))
Ry ((s7,—0.4227),(s5,0.2854)) ((s4,0.2667), (s¢,0.0106)) ((s2,-0.0130), (s7,0.3257))
Rs  ((s7,0.3222), (54, —0.1602)) ((s7,-0.2953), (s5,0.2628)) ((s¢,0.2297), (s5,0.2811))
Rs  ((s5,—0.0728), (56, —0.2464))  ((s7,—-0.0160), (s5,—0.4076))  ((s1,0.3354), (53, —0.2997))
R: ((55,0.2154), (s6,—-0.2788))  ((s3,—0.1290), (s7,0.1869)) (55, =0.1174), (s5,0.4940))
Rg  ((s5,—0.2994), (54, 0.0500)) ((s7,-0.1991), (s5,—0.4203))  ((s5,0.1376), (s5,0.3183))
Ry  ((s6,0.1205), (56, —0.2067)) ((s¢,—0.0101), (56, —0.2236))  ((s4,0.2872), (56, —0.0462))
Ga Gs G
Ri ((51,0.3587), (55,0.2841))  ((s5,-0.2479), (56,0.2093)) _ ((s3,0), (50, 0))
Ry,  ((57,0.1011), (55,0.3037))  ((s7,0.2000), (s5,~0.4528))  ((s5,~0.4211), (56, —0.0267))
Ry ((55,0.2174), (56, —0.1365))  ((54,0.0702), (57, —0.4642)) ((s7,0.2473), (s4,0.0.1865))
Ry ((s6,—0.2367), (56,0.4050))  ((s5,—0.1702), (56,0.2042)) ((s4,0.3580), (s¢,0.2737))
Rs  ((s5,—0.4653), (s¢,0.3357))  ((s5,—0.0475), (s56,0.0333)) ((s5,—0.2768), (56, —0.0457))
R¢  ((s3,0), (s9,0) ((s4,-0.0795), (s7,-0.2330))  ((s4,0.3579), (s¢,0.2165))
Ry ((s7,0.2423), (54, 0.0825)) ((57,0.0749), (s4,0.2785)) ((s7,0.2615), (s4,0.2088))
Rg  ((54,0.2103), (s6,0.4752)) ((s3,0), (59, 0)) ((84,0.0172), (s7,-0.3362))
Ry ((s5,—0.2350), (56,0.1438))  ((s5,0.4272), (56, —0.4952)) ((s3,0.3536), (s7,0.0678))
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Step 3. Calculate the NIS by Eq (5.16).

NIS = {((s4,-0.0714), (s7,-0.4190), (53, -0.1290)), ((s7,0.1869), (s51,0.3354), (53, —0.2997)),
((54,0.2103), (56, 0.4752), (54, —0.0795)), ((s7, —0.2330), (53, 0.3536), (57, 0.0678))}.

Step 4. Calculate the HD; and ED;.

HD, =1.6508, HD, = 1.4910, HD5 = 2.1233, HD, = 1.0588, HDs = 1.8788,
HDg = 1.5187, HD; = 2.1069, HDg = 1.8443, HDg = 1.1751.

ED, = 19154, ED, = 1.6925, ED; = 2.2336, ED, = 1.2755, EDs = 2.0536,
ED¢ = 1.7067, ED7 = 2.3246, EDg = 2.1120, EDg = 1.3759.

Step 5. Determine the RA matrix (see Table 13).

Table 13. Relative assessment matrix (RA).

R R> R R, Rs Re R, Rs Ro
R, 0 03827 —0.7907 12319 —-03662 03409 —0.8652 -03901 1.0152

R, -03827 0 ~1.1735  0.8492 -0.7489 —0.0142 —12480 -0.7729  0.6325

Ry 07907  1.1735 0 20226 04245 11316 —0.0745 04006  1.8059

Ry -12319 -0.8492 -20226 0  -1.5981 —-0.8910 -2.0972 -1.6220 -0.2167
Rs 03662 07489 -0.4245 1.5981 0 07071  -0.4990 -0.0239 13814

Ry —03409 00142 -1.1316 0.8910 —0.7071 0 ~12061 -0.7310  0.6743

R, 08652 12480  0.0745 20972 04990 12061 0 04751  1.8804

Ry 03901 07729 -04006 1.6220 0.0239 07310 —0.4751 0 1.4053

Ry —10152 -0.6325 -1.8059 02167 -1.3814 -0.6743 -1.8804 —1.4053 0

Step 6. Derive the £; by using Eq (5.22). The results of £, are as follows:

£, =0.5583, £, = -2.8586, £3 = 7.6750, £, = —10.5288, £5 = 3.8543,
£6 = —-2.5370, £; = 8.3456, £3 = 4.0695, £9 = —8.5783.

Step 7. On the basis of computing results of £;, all the alternatives can be ranked. The ranking of
alternatives is as follows:

R7 >R3> Rg>Rs >Ry >R¢>R, >Ry >Ry.

So, R; is the best alternative.

Case 2: The weights of attributes are partly known, and the information of known weights is as
follows:

Y = {015<w £0.2, 0.16 <@, <0.18, 0.05 < w3 <0.15, 0.25 < @, <0.35,

6
0.3 < @5 < 045,009 < ws < 0.13, Y @, = 1},

J=1
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To construct the single-objective model, utilize the model (M-2) as follows:

(M =2)
max D(w) = 17.5771w, + 21.0079w, + 23.2248w; + 15.6182w, + 16.1851 w5 + 18.0836w¢

6
st. wed,w,>0,j=1,2,...,6, Y w, =1
J=1

We obtain the optimal weighting vector this model

@ = (0.1500, 0.1600, 0.0500, 0.2500, 0.3000, 0.0900)" .

by solving

Step 1. Determine the weighted assessing matrix with 2TLg-ROFNs using Eq (5.14) (see Table 14).

Table 14. Combined weighted assessing matrix with 2TLg-ROFNs.

G,

(€

Gs

R ((s3,—0.3564), (54, —0.3858))
R,  ((s7,-0.2411), (s5,—0.1498))

Ry ((s7,0.2739), (s4,0.0657))

R:  ((ss,—0.3629), (54, —0.2386))
Rs  ((ss,—0.1661), (53, -0.3069))
Rs  ((s7,0.1317),(s4,0.1317))

Ry ((s7,—0.2285), (s4,0.1055))
Rs  ((s7,0.0526), (s4,0.3772))

Ry ((s5,—0.4920), (s4,0.1640))

((s6,0.4936), (s55,0.0110))
((57,0.3627), (54, —0.4322))

((s7,0.2565), (s4,0.0607))
((s7,0.0038), (54,0.2273))
((s5, —0.2934), (54, —0.3587))
((s5, —0.2266), (s3,0.1496))
((s,0.4407), (55, 0.3486))
((s5, —0.2702), (53, 0.1405))
((s5, —0.4750), (54, 0.0379))

((s5, —0.2665), (s3,0.1101))
((s7,0.3432), (54, 0.4644))

((s3,0), (s0, 0))

((s7,0.3607), (54,0.1157))
((s5, —0.1188), (53, —0.3242))
((s7,0.1878), (55, —0.3895))
((s5,—0.2328), (53, —0.2034))
((ss, —0.2091), (s3, —0.3033))
((s5, —0.2929), (53, 0.0695))

Gy

Gs

Gs

Ry ((s6,0.1071), (s5,0.2954))
R,  ((ss,—0.4129), (s4,0.4646))

Ry ((57,0.3846), (s5,—0.1023))
Ry ((57,—0.0854), (s5,0.3467))
Rs  ((s6,0.2155),(s5,0.3451))
Rs  ((58,0), (50,0))

Ry ((s5,—0.3462), (53,0.3498))
Ry ((s6,0.0137), (s5,0.4829))
Ry ((56,0.3539), (55,0.1601))

((s6,0.1183), (5,0.3971))
((sg,0.4224), (54, -0.1227))

((s6, —0.3507), (s, —0.2773))
((s,0.1696), (s5,0.3921))
((s6,0.2498), (55,0.2271))
((s6, —0.4586), (56, —0.0364))
((s5, —0.4904), (54, —0.3572))
((s3,0), (50,0))
((s7,—0.4486), (s5,0.2670))

((s5,0), (50, 0))
((s7,0.4061), (54, —0.2140))

((s5, —0.1085), (s3, —0.4259))
((s7,0.3556), (s4,0.0171))
((s7,0.4379), (54, —0.2282))
((s7,0.3556), (54, —0.0279))
((s5, —0.1064), (s3, —0.4116))
((s7,0.2733), (s4,0.3421))
((s7,0.0940), (55, —0.2737))

Step 2. Calculate the NIS by Eq (5.16).

NIS =

{((s7,-0.2411), (55, —0.1498)), ((s6, 0.4407), (55,0.3486)), ((s57,0.1878), (55, —0.3895)),

((s6,0.0137), (s5,0.4829))((56, —0.4586), (56, —0.0364)), ((s7, 0.0940), (55, —0.2737))}.

Step 3. Calculate the HD; and ED;.

HD, =0.7762, HD, = 1.1088, HD; = 0.9165, HD, = 0.7636, HDs = 1.0274,
HDg =0.9459, HD; = 1.2580, HDg = 1.1456, HDq = 0.8280.

ED, =0.9534, ED, = 1.3068, ED; = 1.1052, ED, = 0.8774, EDs = 1.2471,
ED¢ = 1.1608, ED; = 1.5152, EDg = 1.3791, EDg = 0.9814.
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Step 4. Determine the RA matrix (see Table 15).

Table 15. Relative assessment matrix (RA).

R R, R; R, Rs Rs R, Ry Ro
R 0 —0.6860 —0.2921 0.0886 -0.5449 —0.3772 -1.0436 —-0.7952 —0.0798
R,  0.6860 0 03939 07745 0.1410 03088 —0.3576 —0.1093  0.6062
Ry 02921  -0.3939 0 03807 -0.2529 -0.0851 —-0.7515 -0.5032 0.2123
R, -0.088 —0.7745 -0.3807 0 ~0.6335 -04658 —1.1322 —0.8838 —0.1684
Rs 05449  —0.1410 02529  0.6335 0 0.1677 —0.4987 —0.2503  0.4652
Rs 03772 -03088 0.0851 0.4658 —0.1677 0 —0.6664 —0.4180  0.2974
R, 10436 03576 07515 1.1322 04987  0.6664 0 0.2484  0.9638
Ry 07952  0.1093 05032 0.8838 0.2503 04180 —0.2484 0 0.7155
Ry 00798 —0.6062 -0.2123 0.1684 -0.4652 -0.2974 -0.9638 —0.7155 0

Step S. Derive the £; by using Eq (5.22). The results of £; are as follows:

£, =-3.7303, £, =2.4435, £5 = -1.1015, £, = -4.5274, £5 = 1.1742,
£6 = —0.3353, £; =5.6622, £5 = 3.4269, £ = —-3.0122.

Step 6. On the basis of computing results of £;, all the alternatives can be ranked. The ranking of
alternatives is as follows:

R7; >Rg >Ry > Rs > Rg > R3 >Ry >R, > Ry,.
So, R; is the best alternative.

6.2. Parameter analysis

The impact of g and x on arc welding robot selection is investigated in this section. First, as indicated
in Tables 16 and 17, we find the average solutions of the arc welding robots as ¢ values vary (from 1
to 8) (k=3) in the 2TLg-ROFWHM operator. After altering g, Tables 18 and 19 show how the average
solutions of the alternatives differ and ranking on the basis of the average solutions shown in Tables 16
and 17. If the DM wants to make a judgement based on complicated data, just increase g to enlarge the
information representation space of 2TLg-ROFS. Effect of variation of g and « on the 2TLg-ROFWHM
operator is shown in Figures 2 and 3, respectively.

To investigate the effects of the parameter « on arc welding robot selection and decision outcomes
in depth. Tables 20 and 21 (¢ = 4) show the average solutions obtained after adjusting the values of «
in both the 2TLg-ROFWHM and 2TLg-ROFWDHM operators. The values of average solutions differ
when the parameter « in the 2TLg-ROFWDHM operator is changed, as shown in Tables 20 and 21,
although the ranking orders are essentially the same in most cases shown in Tables 22 and 23. Effect
of variation of ¢ and x on the 2TLg-ROFWDHM is shown in Figures 4 and 5, respectively. When
the parameters based on the 2TLg-ROFWHM and 2TLg-ROFWDHM operators are changed, both the
score values and alternative ranking change, indicating that the parameter « influences the arc welding
robot selection assessment process.
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Table 16. Average solutions with different parameter g in 2TLg-ROFWHM operator.

Parameter £ £ £ £4 £5 £6 £; £ £
q=1 9.2419  0.4522 8.0325 —-5.5686 —5.6983 -2.6495 —-0.7889 12.5685 —15.5897
q=2 8.3757 0.8741 8.8384 —-6.4119 55053 -29184 04589 12.1618 —15.8735

q=3 8.6811 04570  9.9984 -6.2013 -4.6643 -3.2330 03786 11.4614 -16.8780
q=4 9.2018 0.1342 109091 -6.9945 -3.6352 -3.6145 0.4292 11.1241 -17.5541
q=>5 9.0140 -0.0512 11.6425 -7.1200 -3.0797 -4.0100 0.5400 11.0921 -18.0277
q=6 94112 -0.4079 12.0041 -7.2024 -2.5031 -4.4406 0.7780  10.7475 —18.3869
q=7 9.0445 -0.8170 129281 -7.2637 -1.8192 -4.8432 09374 10.5033 -18.6703
q=8 9.0544 -09737 133726 -7.3163 -1.3976 -5.2068 1.1006 10.2916 —18.9248

Table 17. Average solutions with different parameter « in 2TLg-ROFWHM operator.

Parameter £ £ £3 £4 £5 £ £7 £3 £9
k=1 -1.2161 -0.3893 1.6164 —6.7267 5.3976 —7.5968  8.8638 0.7522  -0.7012
k=2 6.3461 —1.8035 83705 -7.0144 -3.2918 0.3788 2.6722 9.5008 —15.1586
k=3 8.6007 0.6820 9.3537 -6.3231 -5.0894 -3.0861 0.4563 11.8046 —16.3987

k=4 11.5855  2.7295 13611 -2.0245 -11.4463 0.5527 -6.1084 15.4832 —-12.1329

Table 18. Alternative ranking with different parameter ¢ in 2TLg-ROFWHM operator.

Parameter Ranking

g=1 Rs >R >R;>Ry>R;>Rs>Rs5 >Ry >Ry
q=2 Rg>R3; >R, >Ry >R;>Rg>R5>Rs >Rg
q=3 Rs>R3 >Ry >Ry >R7>Rs¢>R5>Rs >Ry
q=4 Rg>R3; >R >R; >R, >Rs>Rs >Ry >Ry
q=5 Rs>R3 >Ry >R7>Ry>Rs>Rs>Rs >Ry
q=6 Rg>R; >R >R; >Ry, >Rs>Rg >Ry >Ry
q=7 Rg>R3; >R >R; >R, >Rs>Rs>R4 >Rg
q=8 Rg>R; >Ry >R; >Ry, >Rs>Rg >Ry >Ry

Table 19. Alternative ranking with different parameter « in 2TLg-ROFWHM operator.

Parameter Ranking

k=1 R;>Rs>R3>Rg >R, >Ryg>R; >Ry >Rg
k=2 Rg>R3; >Ry >R7>Rs>Ry>Rs>R4 >Ry

k=3 Rg>R3; >Ry >Ry >R7>Rs>Rs>R4 >Ry
k=4 Rg >Ry >R, >R3>Rs>Ry>R7>Rs >Ry
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Figure 2. Variation of ¢ in 2TLg-ROFWHM operator.
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Figure 3. Variation of x in 2TLg-ROFWHM operator.

Table 20. Average solutions with different parameter g in 2TLg-ROFWDHM operator.

Parameter £ £ £3 £4 £5 £ £7 £ £9

q=1 0.1530 -3.1792 7.1507 -12.0965 5.5735 —1.8540 8.0698 3.1966 —7.0140
q=2 0.1057 -29132 7.8509 -11.0315 4.3727 -2.5697 85268 3.7767 —8.1183

q=3 1.0370 -2.8208 7.4580 —10.1699 3.4083 —-2.4021 8.1027 4.3676 —8.9809
q=4 2.0292 -2.8761 6.8321 -9.6699 25850 -1.9598 7.6085 5.0272 -9.5762
q=> 26374 -29743 69033 -93430 2.0591 -1.4359 7.1377 49781 -9.9625
q=6 3.1882 -3.1053 6.7752 -9.1052 1.5023 -0.8554 6.6762 5.1364 —10.2125
q=7 39542 -3.2434 6.3435 -8.9285 1.0057 -0.2839 6.2217 5.2570 -10.3264
q=8 4.2588 -3.3906 6.2811 -8.8002 0.5206 0.2603 5.7110 5.4004 -10.2414
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Table 21. Average solutions with different parameter « in 2TLg-ROFWDHM operator.

Parameter £ £ £3 £4 £5 £ £; £ )
k=1 3.4005 2.5863 1.4628  -5.4874 -8.1530 2.2088 -0.6670 12.0452 -7.3961
k=2 3.7906 -0.9149 11.8515 -14.4767 1.8085 -0.3653 6.5394 94213 -17.6544
k=3 0.5583 -2.8586 7.6750 —10.5288 3.8543 -2.5370 8.3456  4.0695 -8.5783
k=4 -2.6107 -3.5564 1.8935 -13.2726 12.1627 -7.5384 11.5950 0.5158 0.8112

Table 22. Alternative ranking with different parameter ¢ in 2TLg-ROFWHM operator.

Parameter Ranking

q=1 R;>R3>Rs5>Rg >Ry >Rs>Ry,>Ry>Ry
q=2 R7>R3>R5>Rg >Ry >Rs>R, >Ry >Ry
q=3 R7>R3>Rg>Rs5 >Ry >Rs>R, >Ry >Ry
q=4 R;>R3;>Rg>Rs>R; >R >R, >Ry >Ry
q=5 R;>R3>Rg>Ry>Rs5>Rs >R, >Ry >Rg
q=6 R;>R;>Rg >Ry >Rs>Rg >Ry >Ry >Ry
q=7 R3;>R;>Rg >Ry >R5>Rs >R, >Ry >Rg
q=8 R;>R;>Rg >Ry >Rs>Rg >Ry >Ry >Ry

Table 23. Alternative ranking with different parameter x in 2TLg-ROFWDHM operator.

Parameter Ranking

k=1 Rg >Ry >R, >Rs>R3>R;>R4>Rg>Rs
k=2 R3;>Rg>R;>Ry >R5>Rg >R, >Rs >Rg
k=3 R7>R3>Rg>R5 >Ry >Rs>R, >Ry >Ry
k=4 Rs >R;>R3>R9g>Rg>Ry >R, >Rs >Ry

—o—q-=1 q=2 q=3 q=4 —¥—q=5 —@—0g=6 q=7 0=8
& 100%
80%
60%
‘ 40%
20%
NN 220\ _ e N\ - o
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. -60%
-80%
L -100%
£1 £1 £1 £1 £1 £1 £1 £1 £1

Figure 4. Variation of ¢ in 2TLg-ROFWDHM operator.
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Figure 5. Variation of x in 2TLg-ROFWDHM operator.

6.3. Comparative analysis

In this subsection, we use certain validated approaches to cope with the proposed MAGDM problem
and analyze the outcomes with our developed framework to check its feasibility and effectiveness.
We carefully compute the evaluation outcomes for the selection of arc welding robots utilizing these
strategies. Tables 24 and 25 illustrated by Figures 6 and 7, respectively, summarize the output of the
comparisons among the developed CODAS method and existing EDAS and TOPSIS methods.

Table 24. Evaluation outcomes utilizing different methodologies based on 2TLg-ROFWHM

operator.

Alternatives EDAS Ranking CODAS Ranking TOPSIS Ranking
R, 0.6255 111 8.6007 I 0.6850 I
R, 0.7340 I 0.6820 v 0.6278 v
R; 0.5452 VI 9.3537 I 0.7280 I
R4 0.3315 VIII —-6.3231 VIII 0.5059 VIII
Rs 0.4210 VII —-5.0894 VII 0.5399 VII
Rs 0.5998 v -3.0861 VI 0.5812 VI
R; 0.5728 \Y% 0.4563 \% 0.6136 \Y%
Ry 0.8143 I 11.8046 I 0.7400 I
Ry 0.1015 X —-16.3987 X 0.4010 IX

Table 25. Evaluation outcomes utilizing different methodologies based on 2TLg-

ROFWDHM operator.

Alternatives EDAS Ranking CODAS Ranking TOPSIS Ranking
R, 0.4897 VI 0.5583 v 0.3909 v
R, 0.2840 viI —-2.8586 Vil 0.3490 VIl
R; 0.8716 I 7.6750 II 0.4678 II
Ry 0.2296 IX —-10.5288 IX 0.2593 IX
Rs 0.6853 I 3.8543 1A% 0.4197 1A%
Rs 0.2521 VIII —-2.5370 VI 0.3634 VI
R; 0.5000 v 8.3456 I 0.4727 I
Rg 0.5000 1 4.0695 11 0.4274 I
Ry 0.5000 \% —-8.5783 VIII 0.2784 VIII
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Figure 6. Comparison of CODAS method based on 2TLg-ROFWHM operator with different
approaches.
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Figure 7. Comparison of CODAS method based on 2TLg-ROFWDHM operator with
different approaches.

There is some variation in the ranking order of the alternatives due to the basic behavior of the
various aggregation methods. However, in most cases, the most acceptable alternatives are the same
for the existing method and the proposed method, as given in Tables 24 and 25 and shown in Figures 6
and 7, respectively. Therefore, by comparing the results of EDAS and TOPSIS methods, we can
conclude that Rg and R; are the best arc welding robots.
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7. Conclusions

The CODAS ranking method is very useful and efficient when dealing with complex MAGDM
difficulties. Some experts use it to evaluate a handful of alternatives by using various properties. In
this paper, we have proposed AO and extended the CODAS method to MAGDM with 2TLg-ROFS,
based on two different types of distance measurements. The main advantage of the proposed technique
compared to techniques already in use is that it not only addresses 2TLg-ROFS, but also has a strong
ability to identify the best alternatives. We have developed 2TLg-ROFS as a new advance in FS theory
for conveying data complexity. 2TLg-ROFS has involved the integration of 2TL terms and ¢-ROF sets,
increasing the adaptability of g-ROFS. Inspired by traditional AO, we have proposed two aggregations
(2TLg-ROFHM and 2TLg-ROFWHM operators) to aggregate 2TLg-ROFS, and further have explored
their basic features. We have devised a technique called the maximizing deviation method to discover
ideal relative weights for attributes in linguistic contexts, with the premise that attributes with larger
deviation values among the alternatives should be considered to have larger weights. The distinctive
feature of this development is that it can reduce the influence of the subjectivity of decision makers
and make full use of decision information. Furthermore, the CODAS method is extended to solve
the MAGDM challenge using 2TLg-ROFS, which can fully consider both ED and HD. Finally, a
practical example is given to demonstrate the suggested method for evaluating and selecting an arc
welding robot. We have also examined the influence of different parameters on the selection of the
arc welding robot. The proposed method is also compared with the EDAS and TOPSIS methods to
demonstrate their advantages and efficacy. The four main contributions of this study are as follows: (1)
The development of 2TLg-ROFS; (2) the extension of the classical CODAS method to 2TLg-ROFS;
(3) the CODAS of the 2TLg-ROFS MAGDM problem method design to provide DM with an effective
way to solve MAGDM problems; and (4) present a case study on the evaluation and selection of arc
welding robots to demonstrate the applicability, feasibility and effectiveness of the proposed MAGDM
method. We will continue to extend our proposed model to other ambiguous cases and application
domains for the next study.

Acknowledgements

The fourth author extends his appreciation to the Deanship of Scientific Research at King Khalid
University for funding this work through the General Research Project under grant number
(R.G.P.2/48/43).

Conflict of interest

The authors declare no conflicts of interest.

References

1. J. F. Engelberger, Robotics in practice: Management and applications of industrial robots,
Springer, 2012.

2. J.N. Pires, A. Loureiro, G. Bolmsjo, Welding robots: Technology, system issues and application,
London: Springer, 2006. https://doi.org/10.1007/1-84628-191-1

AIMS Mathematics Volume 7, Issue 9, 17529-17569.


http://dx.doi.org/https://doi.org/10.1007/1-84628-191-1

17565

10.

11.

12.

13.

14.

15.

16.

V. Kumar, S. K. Albert, N. Chanderasekhar, Development of programmable system on chip-based
weld monitoring system for quality analysis of arc welding process, Int. J. Comput. Integ. Manuf.,
33 (2020), 925-935. https://doi.org/10.1080/0951192X.2020.1815847

H. K. Banga, P. Kalra, R. Kumar, S. Singh, C. I. Pruncu, Optimization of the cycle time of robotics
resistance spot welding for automotive applications, J. Adv. Manuf. Process., 3 (2021), e10084.
https://doi.org/10.1002/amp2.10084

E. F Karsak, Z. Sener, M. Dursun, Robot selection using a fuzzy regression-
based decision-making approach, [Int. J. Prod. Res., 50 (2012), 6826-6834.
https://doi.org/10.1080/00207543.2011.627886

A. Ur Rehman, A. Al-Ahmari, Assessment of alternative industrial robots using AHP and TOPSIS,
Int. J. Ind. Syst. Eng., 15 (2013), 475-489.

D. K. Sen, S. Datta, S. K. Patel, S. S. Mahapatra, Multi-criteria decision making towards selection
of industrial robot: Exploration of PROMETHEE II method, Benchmarking, 22 (2015), 465—-487.
https://doi.org/10.1108/B1J-05-2014-0046

Y. X. Xue, J. X. You, X. Zhao, H. C. Liu, An integrated linguistic MCDM approach for robot
evaluation and selection with incomplete weight information, Int. J. Prod. Res., 54 (2016), 5452—
5467. https://doi.org/10.1080/00207543.2016.1146418

M. K. Ghorabaee, Developing an MCDM method for robot selection with
interval type-2 fuzzy sets, Robot. Comput.-Integr. Manuf., 37 (2016), 221-232.
https://doi.org/10.1016/j.rcim.2015.04.007

S. Mondal, S. Kuila, A. K. Singh, P. Chatterjee, A complex proportional assessment method-based
framework for industrial robot selection problem, Int. J. Res. Sci. Eng., 3 (2017), 368-378.

M. Mathew, S. Sahu, A. K. Upadhyay, Effect of normalization techniques in robot selection using
weighted aggregated sum product assessment, Int. J. Innov. Res. Adv. Stud., 4 (2017), 59—-63.

F. Zhou, X. Wang, M. Goh, Fuzzy extended VIKOR-based mobile robot
selection model for hospital pharmacy, Int. J. Adv. Robot. Syst., 2018, 1-11.
https://doi.org/10.1177/1729881418787315

M. Akram, S. Naz, S. A. Edalatpanah, R. Mehreen, Group decision-making framework under
linguistic g-rung orthopair fuzzy Einstein models, Soft Comput., 25 (2021), 10309-10334.
https://doi.org/10.1007/s00500-021-05771-9

M. Akram, S. Naz, F. Feng, A. Shafig, Assessment of hydropower plants in Pakistan: Muirhead
mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS, Arab.
J. Sci. Eng., 2022. https://doi.org/10.1007/s13369-022-07081-0

M. Akram, S. Naz, F. Ziaa, Novel decision-making framework based on complex g-rung orthopair
fuzzy information, Sci. Iran., 2021, 1-34. https://doi. org/10.24200/SCI1.2021.55413.4209

S. Naz, M. Akram, S. Alsulami, F. Ziaa, Decision-making analysis under interval-valued g-rung
orthopair dual hesitant fuzzy environment, Int. J. Comput. Intell. Syst., 14 (2021), 332-357.
https://doi.org/10.2991/ijcis.d.201204.001

AIMS Mathematics Volume 7, Issue 9, 17529-17569.


http://dx.doi.org/https://doi.org/10.1080/0951192X.2020.1815847
http://dx.doi.org/https://doi.org/10.1002/amp2.10084
http://dx.doi.org/https://doi.org/10.1080/00207543.2011.627886
http://dx.doi.org/https://doi.org/10.1108/BIJ-05-2014-0046
http://dx.doi.org/https://doi.org/10.1080/00207543.2016.1146418
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2015.04.007
http://dx.doi.org/https://doi.org/10.1177/1729881418787315
http://dx.doi.org/https://doi.org/10.1007/s00500-021-05771-9
http://dx.doi.org/https://doi.org/10.1007/s13369-022-07081-0
http://dx.doi.org/https://doi. org/10.24200/SCI.2021.55413.4209
http://dx.doi.org/https://doi.org/10.2991/ijcis.d.201204.001

17566

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. H. Garg, S. Naz, F. Ziaa, Z. Shoukat, A ranking method based on Muirhead mean operator
for group decision making with complex interval-valued g-rung orthopair fuzzy numbers, Soft
Comput., 25 (2021), 14001-14027. https://doi.org/10.1007/s00500-021-06231-0

P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic
g-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn.
Cyber., 13 (2022), 883-906. https://doi.org/10.1007/s13042-021-01425-2

S. Naz, M. Akram, M. A. Al-Shamiri, M. M. Khalaf, G. Yousaf, A new MAGDM method with 2-
tuple linguistic bipolar fuzzy Heronian mean operators, Math. Biosci. Eng., 19 (2022), 3843-3878.
https://doi.org/10.3934/mbe.2022177

S. Naz, M. Akram, A. B. Saeid, A. Saadat, Models for MAGDM with dual hesitant g-rung
orthopair fuzzy 2-tuple linguistic MSM operators and their application to COVID-19 pandemic,
Expert Syst., 2022. https://doi.org/10.1111/exsy.13005

S. Naz, M. Akram, G. Muhiuddin, A. Shafiq, Modified EDAS method for MAGDM based on
MSM operators with 2-tuple linguistic-spherical fuzzy sets, Math. Probl. Eng., 2022 (2022), 1-
34. https://doi.org/10.1155/2022/5075998

M. Akram, N. Ramzan, F. Feng, Extending COPRAS method with linguistic Fermatean fuzzy sets
and Hamy mean operators, J. Math., 2022 (2022), 1-26. https://doi.org/10.1155/2022/8239263

M. Akram, U. Noreen, M. M. Ali Al-Shamiri, Decision analysis approach based on 2-tuple
linguistic-polar fuzzy hamacher aggregation operators, Discrete Dyn. Nat. Soc., 2022 (2022), 1-
22. https://doi.org/10.1155/2022/6269115

S. Naz, M. Akram, M. M. A. Al-Shamiri, M. R. Saeed, Evaluation of network security service
provider using 2-tuple linguistic complex-rung orthopair fuzzy COPRAS method, Complexity,
2022 (2022), 1-27. https://doi.org/10.1155/2022/4523287

R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222—-1230.
https://doi.org/10.1109/TFUZZ.2016.2604005

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
https://doi.org/10.1016/S0165-0114(86)80034-3

R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy
Syst., 22 (2013), 958-965. https://doi.org/10.1109/TFUZZ.2013.2278989

P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their
applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259-280.
https://doi.org/10.1002/int.21927

P. Liu, J. Liu, Some g-rung orthopai fuzzy Bonferroni mean operators and their application
to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315-347.
https://doi.org/10.1002/int.21933

G. Wei, C. Wei, J. Wang, H. Gao, Y. Wei, Some g-rung orthopair fuzzy Maclaurin symmetric mean
operators and their applications to potential evaluation of emerging technology commercialization,
Int. J. Intell. Syst., 34 (2019), 50-81. https://doi.org/10.1002/int.22042

AIMS Mathematics Volume 7, Issue 9, 17529-17569.


http://dx.doi.org/https://doi.org/10.1007/s00500-021-06231-0
http://dx.doi.org/https://doi.org/10.1007/s13042-021-01425-2
http://dx.doi.org/https://doi.org/10.3934/mbe.2022177
http://dx.doi.org/https://doi.org/10.1111/exsy.13005
http://dx.doi.org/https://doi.org/10.1155/2022/5075998
http://dx.doi.org/https://doi.org/10.1155/2022/8239263
http://dx.doi.org/https://doi.org/10.1155/2022/6269115
http://dx.doi.org/https://doi.org/10.1155/2022/4523287
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2016.2604005
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/https://doi.org/10.1002/int.21927
http://dx.doi.org/https://doi.org/10.1002/int.21933
http://dx.doi.org/https://doi.org/10.1002/int.22042

17567

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

. Z. Liu, S. Wang, P. Liu, Multiple attribute group decision making based on g-rung
orthopair fuzzy Heronian mean operators, Int. J. Intell. Syst., 33 (2018), 2341-2363.
https://doi.org/10.1002/int.22032

Z. Yang, T. Ouyang, X. Fu, X. Peng, A decision-making algorithm for online shopping using
deep-learning based opinion pairs mining and g-rung orthopair fuzzy interaction Heronian mean
operators, Int. J. Intell. Syst., 35 (2020), 783-825. https://doi.org/10.1002/int.22225

P. Liu, S. M. Chen, P. Wang, Multiple-attribute group decision-making based on g-rung orthopair
fuzzy power Maclaurin symmetric mean operators, /[EEE Trans. Syst., Man, Cybern.: Syst., S0
(2018), 3741-3756. https://doi.org/10.1109/TSMC.2018.2852948

A. Hussain, M. 1. Ali, T. Mahmood, M. Munir, Group-based generalized g-rung orthopair average
aggregation operators and their applications in multi-criteria decision making, Complex Intell.
Syst., 7 (2021), 123—144. https://doi.org/10.1007/s40747-020-00176-x

P. He, Z. Yang, B. Hou, A multi-attribute decision-making algorithm using g-rung
orthopair power Bonferroni mean operator and its application, Mathematics, 8 (2020), 1240.
https://doi.org/10.3390/math8081240

Z. Ali, T. Mahmood, Maclaurin symmetric mean operators and their applications in the
environment of complex g-rung orthopair fuzzy sets, Comput. Appl. Math., 39 (2020), 1-27.
https://doi.org/10.1007/s40314-020-01145-3

L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I,
Inf. Sci., 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

F. Herrera, L. Martinez, An approach for combining linguistic and numerical information based on
the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertainty, Fuzziness
Knowl.-Based Syst., 8 (2000), 539-562. https://doi.org/10.1142/S0218488500000381

Z. Wang, R. M. Rodriguez, Y. M. Wang, L. Martinez, A two-stage minimum adjustment
consensus model for large scale decision making based on reliability modeled by
two-dimension 2-tuple linguistic information, Comput. Ind. Eng., 151 (2021), 106973.
https://doi.org/10.1016/j.cie.2020.106973

Z. Zhang, Z. Li, Y. Gao, Consensus reaching for group decision making with multi-granular
unbalanced linguistic information: A bounded confidence and minimum adjustment-based
approach, Inform. Fusion, 74 (2021), 96-110. https://doi.org/10.1016/j.inffus.2021.04.006

W. P. Wang, Evaluating new product development performance by fuzzy linguistic computing,
Expert Syst. Appl., 36 (2009), 9759-9766. https://doi.org/10.1016/j.eswa.2009.02.034

X. Deng, J. Wang, G. Wei, Some 2-tuple linguistic Pythagorean Heronian mean operators and their
application to multiple attribute decision-making, J. Exp. Theor. Artif. Intell., 31 (2019), 555-574.
https://doi.org/10.1080/0952813X.2019.1579258

G. Wei, H. Gao, Pythagorean 2-tuple linguistic power aggregation operators in multiple
attribute decision making, Economic Research-Ekonomska Istraivanja, 33 (2020), 904-933.
https://doi.org/10.1080/1331677X.2019.1670712

AIMS Mathematics Volume 7, Issue 9, 17529-17569.


http://dx.doi.org/https://doi.org/10.1002/int.22032
http://dx.doi.org/https://doi.org/10.1002/int.22225
http://dx.doi.org/https://doi.org/10.1109/TSMC.2018.2852948
http://dx.doi.org/https://doi.org/10.1007/s40747-020-00176-x
http://dx.doi.org/https://doi.org/10.3390/math8081240
http://dx.doi.org/https://doi.org/10.1007/s40314-020-01145-3
http://dx.doi.org/https://doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/https://doi.org/10.1142/S0218488500000381
http://dx.doi.org/https://doi.org/10.1016/j.cie.2020.106973
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2021.04.006
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2009.02.034
http://dx.doi.org/https://doi.org/10.1080/0952813X.2019.1579258
http://dx.doi.org/https://doi.org/10.1080/1331677X.2019.1670712

17568

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Y. Ju, A. Wang, J. Ma, H. Gao, E. D. Santibanez Gonzalez, Some g-rung orthopair fuzzy 2-tuple
linguistic Muirhead mean aggregation operators and their applications to multiple-attribute group
decision making, Int. J. Intell. Syst., 35 (2020), 184-213. https://doi.org/10.1002/int.22205

Z. Liang, Models for multiple attribute decision making with fuzzy number intuitionistic
fuzzy Hamy mean operators and their application, IEEE Access, 8 (2020), 115634-115645.
https://doi.org/10.1109/ACCESS.2020.3001155

Z. Li, H. Gao, G. Wei, Methods for multiple attribute group decision making based
on intuitionistic fuzzy dombi Hamy mean operators, Symmetry, 10 (2018), 574.
https://doi.org/10.3390/sym10110574

L. Wu, J. Wang, H. Gao, Models for competiveness evaluation of tourist destination with some
interval-valued intuitionistic fuzzy Hamy mean operators, J. Intell. Fuzzy Syst., 36 (2019), 5693—
57009. https://doi.org/10.3233/JIFS-181545

Z. Li, G. Wei, M. Lu, Pythagorean fuzzy Hamy mean operators in multiple attribute group
decision making and their application to supplier selection, Symmetry, 10 (2018), 505.
https://doi.org/10.3390/sym 10100505

J. Wang, G. Wei, J. Lu, F. E. Alsaadi, T. Hayat, C. Wei, et al., Some q-rung orthopair
fuzzy Hamy mean operators in multiple attribute decision-making and their application to
enterprise resource planning systems selection, Int. J. Intell. Syst., 34 (2019), 2429-2458.
https://doi.org/10.1002/int.22155

M. K. Ghorabaee, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-
based assessment (CODAS) method for multi-criteria decision making, Econ. Comput. Econ.
Cyber. Stud. Res., 50 (2016), 25-44.

D. Panchal, P. Chatterjee, R. K. Shukla, T. Choudhury, J. Tamosaitiene, Integrated fuzzy AHP-
Codas framework for maintenance decision in urea fertilizer industry, Econ. Comput. Econ. Cyber.
Stud. Res., 51 (2017), 179-196.

I. Badi, M. A. Ballem, A. Shetwan, Site selection of desalination plant in Libya by using
combinative distance-based assessment (CODAS) method, Int. J. Qual. Res., 12 (2018), 609-624.
https://doi.org/10.18421/1JQR12.03-04

M. K. Ghorabaee, M. Amiri, E. K. Zavadskas, R. Hooshmand, J. Antucheviien, Fuzzy extension
of the CODAS method for multi-criteria market segment evaluation, J. Bus. Econ. Manage., 18
(2018), 1-19. https://doi.org/10.3846/16111699.2016.1278559

D. Pamucar, 1. Badi, K. Sanja, R. Obradovic, A novel approach for the selection of
powergeneration technology using a linguistic neutrosophic CODAS method: A case study in
Libya, Energies, 11 (2018), 2489. https://doi.org/10.3390/en11092489

S. Seker, A novel interval-valued intuitionistic trapezoidal fuzzy combinative
distance-based assessment (CODAS) method, Soft Comput., 24 (2020), 2287-2300.
https://doi.org/10.1007/s00500-019-04059-3

F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems
under linguistic information, Fuzzy Sets Syst., 115 (2000), 67-82. https://doi.org/10.1016/S0165-
0114(99)00024-X

AIMS Mathematics Volume 7, Issue 9, 17529-17569.


http://dx.doi.org/https://doi.org/10.1002/int.22205
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3001155
http://dx.doi.org/https://doi.org/10.3390/sym10110574
http://dx.doi.org/https://doi.org/10.3233/JIFS-181545
http://dx.doi.org/https://doi.org/10.3390/sym10100505
http://dx.doi.org/https://doi.org/10.1002/int.22155
http://dx.doi.org/https://doi.org/10.18421/IJQR12.03-04
http://dx.doi.org/https://doi.org/10.3846/16111699.2016.1278559
http://dx.doi.org/https://doi.org/10.3390/en11092489
http://dx.doi.org/https://doi.org/10.1007/s00500-019-04059-3
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(99)00024-X
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(99)00024-X

17569

57.

38.

59.

60.

61.

62.

63.

AR

F. Herrera, L. Martinez, A 2-tuple fuzzy linguistic representation model for computing with words,
IEEE Trans. Fuzzy Syst., 8 (2000), 746—752. https://doi.org/10.1109/91.890332

T. Hara, M. Uchiyama, S. E. Takahasi, A refinement of various mean inequalities, J. Inequal.
Appl., 1998 (1998), 932025.

S. Wu, J. Wang, G. Wei, Y. Wei, Research on construction engineering project risk assessment with
some 2-tuple linguistic neutrosophic Hamy mean operators, Sustainability, 10 (2018), 1525-1536.
https://doi.org/10.3390/su10051536

R. R. Yager, The power average operator, IEEE Trans. Syst., Man, Cybern.-Part A: Syst. Hum., 31
(2001), 724-731. https://doi.org/10.1109/3468.983429

Z. Xu, R. R. Yager, Power-geometric operators and their use in group decision making, /EEE
Trans. Fuzzy Syst., 18 (2009), 94-105. https://doi.org/10.1109/TFUZZ.2009.2036907

Z. S. Chen, K. S. Chin, Y. L. Li, Y. Yang, On generalized extended Bonferroni
means for decision making, [EEE Trans. Fuzzy Syst., 24 (2016), 1525-1543.
https://doi.org/10.1109/TFUZZ.2016.2540066

S. H. Xiong, Z. S. Chen, J. P. Chang, K. S. Chin, On extended power average operators for
decision-making: A case study in emergency response plan selection of civil aviation, Comput.
Ind. Eng., 130 (2019), 258-271. https://doi.org/10.1016/j.cie.2019.02.027

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

s AIMS Press

AIMS Mathematics Volume 7, Issue 9, 17529-17569.


http://dx.doi.org/https://doi.org/10.1109/91.890332
http://dx.doi.org/https://doi.org/10.3390/su10051536
http://dx.doi.org/https://doi.org/10.1109/3468.983429
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2009.2036907
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2016.2540066
http://dx.doi.org/https://doi.org/10.1016/j.cie.2019.02.027
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	2-Tuple linguistic q-rung orthopair fuzzy set
	Some 2TLq-ROF Hamy mean aggregation operators
	2TLq-ROFHM aggregation operator
	2TLq-ROFWHM aggregation operator
	2TLq-ROFDHM aggregation operator
	2TLq-ROFWDHM aggregation operator

	MAGDM based on the maximizing deviation and CODAS method
	Calculation of optimal weights utilizing maximizing deviation method
	CODAS approach for MAGDM under 2TLq-ROF environment

	Numerical example: Case study
	Results of the case study
	Decision-making procedure based on the 2TLq-ROFWHM operator
	Decision-making procedure based on the 2TLq-ROFWDHM operator

	Parameter analysis
	Comparative analysis

	Conclusions

