In this paper, homothetical and translation lightlike graphs, which are generalizations of homothetical and translation lightlike hypersurfaces are investigated in the semi-Euclidean space $ \mathbb{R}_{q}^{n+2} $, respectively. We prove that all homothetical and all translation lightlike graphs are locally the hyperplanes. According to this fact, both of these graphs are minimal.
Citation: Derya Sağlam. Minimal homothetical and translation lightlike graphs in $ \mathbb{R} _{q}^{n+2} $[J]. AIMS Mathematics, 2022, 7(9): 17198-17209. doi: 10.3934/math.2022946
In this paper, homothetical and translation lightlike graphs, which are generalizations of homothetical and translation lightlike hypersurfaces are investigated in the semi-Euclidean space $ \mathbb{R}_{q}^{n+2} $, respectively. We prove that all homothetical and all translation lightlike graphs are locally the hyperplanes. According to this fact, both of these graphs are minimal.
[1] | K. Duggal, A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Dordrecht: Springer Science, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2 |
[2] | K. Duggal, A. Gimenez, Lightlike hypersurfaces of Lorentzian manifolds and with distinguished screen, J. Geom. Phys., 55 (2005), 107–122. http://dx.doi.org/10.1016/j.geomphys.2004.12.004 doi: 10.1016/j.geomphys.2004.12.004 |
[3] | A. Bejancu, Null hypersurfaces of semi-Euclidean spaces, Saitama Mathematical Journal, 14 (1996), 25–40. |
[4] | B. Acet, Lightlike hypersurfaces of metallic semi-Riemannian manifolds, Int. J. Geom. Methods M., 15 (2018), 1850201. http://dx.doi.org/10.1142/S0219887818502018 doi: 10.1142/S0219887818502018 |
[5] | E. Kılıç, M. Gülbahar, E. Kavuk, Concurrent vector fields on lightlike hypersurfaces, Mathematics, 9 (2021), 59. http://dx.doi.org/10.3390/math9010059 doi: 10.3390/math9010059 |
[6] | X. Liu, Z. Wang, On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, J. Nonlinear Sci. Appl., 8 (2015), 628–639. http://dx.doi.org/10.22436/jnsa.008.05.15 doi: 10.22436/jnsa.008.05.15 |
[7] | S. Izumiya, M. Fuster, K. Saji, Flat lightlike hypersurfaces in Lorentz-Minkowski 4-space, J. Geom. Phys., 59 (2009), 1528–1546. http://dx.doi.org/10.1016/j.geomphys.2009.07.017 |
[8] | F. Massamba, Relative nullity foliations and lightlike hypersurfaces in indefinite Kenmotsu manifolds, Turk J. Math., 35 (2011), 129–149. http://dx.doi.org/10.3906/mat-0908-17 doi: 10.3906/mat-0908-17 |
[9] | D. Pham, Degenerate Monge type hypersurfaces, Acta Math. Univ. Comen., 83 (2014), 67–80. |
[10] | D. Kupeli, On null submanifolds in spacetimes, Geom. Dedicata, 23 (1987), 33–51. http://dx.doi.org/10.1007/BF00147389 doi: 10.1007/BF00147389 |
[11] | D. Sağlam, A. Sabuncuoğlu, Minimal homothetical lightlike hypersurfaces of semi-Euclidean spaces, Kuwait J. Sci. Eng., 38 (2011), 1–14. |
[12] | W. Geomans, I. Woestyne, Translation and homothetical lightlike hypersurfaces of a semi-Euclidean space, Kuwait J. Sci. Eng., 38 (2009), 35–42. |
[13] | B. Lima, N. Santos, P. Sousa, Translation hypersurfaces with constant scalar curvature into the Euclidean spaces, Isr. J. Math., 201 (2014), 797–811. http://dx.doi.org/10.1007/s11856-014-1083-2 doi: 10.1007/s11856-014-1083-2 |
[14] | M. Moruz, M. Munteanu, Minimal translation hypersurfaces in $E^{4}$, J. Math. Anal. Appl., 439 (2016), 798–812. http://dx.doi.org/10.1016/j.jmaa.2016.02.077 doi: 10.1016/j.jmaa.2016.02.077 |
[15] | D. Yang, J. Zhang, Y. Fu, A note on minimal translation graphs in Euclidean space, Mathematics, 7 (2019), 889. http://dx.doi.org/10.3390/math7100889 doi: 10.3390/math7100889 |
[16] | D. Sağlam, Minimal translation graphs in semi-Euclidean space, AIMS Mathematics, 6 (2021), 10207–10221. http://dx.doi.org/10.3934/math.2021591 doi: 10.3934/math.2021591 |