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Abstract: In this paper, homothetical and translation lightlike graphs, which are generalizations of
homothetical and translation lightlike hypersurfaces are investigated in the semi-Euclidean space RZ*Z,
respectively. We prove that all homothetical and all translation lightlike graphs are locally the
hyperplanes. According to this fact, both of these graphs are minimal.
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1. Introduction and preliminaries

Lightlike (degenerate, null) submanifolds of a semi-Riemannian manifold have a very important
place in physics. Especially, with its use in general relativity, it has attracted the attention of many
scientists and there are many studies on this subject. Lightlike submanifolds were extensively studied
by Duggal and Bejancu [1]. Semi-Riemanian submanifolds whose induced metric degenerates are
called lightlike submanifolds. Lightlike hypersurfaces are lightlike submanifolds in semi-Euclidean
space and have been studied by many mathematicians [1-10].

Let M be a hypersurface of an (n + 2)-dimensional semi-Riemannian manifold M of index ¢ €
{1,...,n+ 1}, n > 0. Let g be the semi-Riemannian metric on M. g induces on M a symmetric tensor
field g of type (0,2). The radical (null) space of 7, M is

RadT M ={&,€ T M : g,(é0, X)) =0, VX, € T,M},
where 7, M is the tangent space to M at u € M. Since
T.M* ={V,eT,M : gV, W,) = 0, YW, € T,M},

we have
RadT M =T,M N TL,Ml [1].
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Definition 1.1. Let M be a hypersurface of an (n + 2)-dimensional semi-Riemannian manifold M,
n>0.If Rad T,M + {0} for any u € M, M is called a lightlike (degenerate) hypersurface of M [1].

If M is a lightlike hypersurface of M, T,M" is an one-dimensional vector subspace of the tangent
space T,M. Each m-dimensional subspace in 7,M that does not contain the subspace 7, M~ is
orthogonal to 7,,M* and called a screen space at point u. The vector bundle that is constituted by
choosing a screen space each point of M is said to be a screen distribution on M, denoted by S (7' M).
Thus we have

TM =S(TM)LTM*".

TM .y is a vector bundle that has M as base space and assigns 7, M to each point u of M. g, is
non-degenerate on S (7,,M). If a subspace is non-degenerate, its complementary orthogonal subspace
is also non-degenerate and is uniquely determined. Thus, the vector bundle that is determined by the
complementary orthogonal subspace is called the orthogonal complementary vector bundle to S (7T M)
in TM/M, denoted by S(TM)*. Also we have

TM, y =S(TM)LS(TM)* [1].

Theorem 1.1. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold (M, ).
Then there exists a unique vector bundle tr(T M) of rank 1 over M, such that for any non-zero & €
['(T M*) on a coordinate neighbourhood U € M, there exists a unique section N of tr(T M) on U with
the following properties:
8N, &) =1,
and
g(N,N)=g(N,W) =0, YW eI'(S(TM) ).

The space that is the union of subspaces spanned by the vector N, at each point u € M is a lightlike
vector bundle and is called the lightlike transversal vector bundle of M with respect to S(TM). It is
denoted by tr(TM). tr(T M), is the subspace spanned by the vector N,. Hence we have

TM 3y = S(TM) L(TM* & tr(TM)) = TM & tr(TM) [1].

Definition 1.2. Let (M, g, S(TM)) be a lightlike hypersurface of an (n + 2)-dimensional semi-
Riemannian manifold (M, g) and V be the Levi-Civita connection on M with respect to 5. If
X,Y € I(TM), then VxY € T(TM). Using the decomposition TM .y = TM & tr(T M), we obtain
the formulas

VxY = Vx¥ + h(X,Y)

and _
va = —Avx + Vg(‘/,

for any X,Y € I'(TM) and V € T'(tr(TM)), where VxY and AyX belong to I'(T M) while h(X,Y)
and ViV belong to I'(tr(TM)). It is easy to check that V is a torsion-free linear form on M , his a
symmetric F (M)-bilinear form on T'(T M), which has range I'(tr(T M)), Ay is a ¥ (M)-linear operator
on T'(TM) and V' is a linear connection on the lightlike transversal vector bundle tr(T M). We call V
and V' the induced connections on M and tr(T M), respectively. Consistent with the classical theory
of Riemannian hypersurfaces we call h and Ay the second fundamental form and the shape operator
respectively, of the lightlike immersion of M in M. Also, we name the above equations the Gauss and
the Weingarten formulae, respectively [1].

AIMS Mathematics Volume 7, Issue 9, 17198—-17209.



17200

Definition 1.3. Let (M, g, S(TM)) be a lightlike hypersurface of an (n + 2)-dimensional semi-
Riemannian manifold (M, g). Next, if P denotes the projection morphism of TM on S(T M) with
respect to the decomposition TM = S(TM) LT M~*, we obtain

VPY = VyPY + h(X, PY), YX,Y € (T M).

and

ot

ViU = —AyX + VU, U € r(TMl)

where VXPY and AUX belong to I'(S(TM)) while h(X PY) and V U belong to F(TML) It follows

that V and V are linear connections on vector bundles S (TM) and T M~ respectively, h is a I'(T M*)-
valued F (M)-bilinear form on T(T M) xT'(S (T M)) and AU is U'(S (T M))-valued F (M)-linear operator

on I'(TM). We call h and ;lu the second fundamental form and the shape operator of the screen
distribution S (T M), respectively. Also, the above equations are the Gauss and the Weingarten equation
for the screen distribution S(TM) [1].

Proposition 1.1. On any lightlike Monge hypersurfaces M of RZ”, the shape operators Ay and A; of
M and of the natural screen distribution are related by

1 =
AN: EAf[]]

Definition 1.4. Let & be a normal null section. The trace of —A¢ is called the lightlike mean curvature
H; on M associated with €. Then
H; = trace(—Ag) = —trace(A;).

One of the good properties of the lightlike mean curvature is that it does not depend on the screen
distribution chosen, but only of the local normal null section & [2].

Let yo, Y1,..., yns1 be coordinate functions in R"*? and x;, X»,..., X,4; be coordinate functions
in R™!. Let M be a lightlike Monge hypersurface determined by the transformation

w(-xla .XQ,. '-’xn+1) = (F(X], x27'- '7-xn+])7 xla x27'- '7-xn+])7

where F : D — R is a smooth function and D is an open subset of R**!. 'We have

0
Ogo¥y=F, —oyY+—oy, I<a<n+l,
“dyo 0y
where 01, 0, ..., 0,; are coordinate frame fields on M. Since g(d, o ¥, ¢) = 0 for each @, we have
9 q-1 9 n+1
oYy =—oi— Fy—oy+ Fy, oy,
§¢ay0w;,aysw; ekl
where £ is the normal vector field on M. The vector field N determined by the equation
— 0
N=—-—+~
Ao ¢

satisfies the conditions of Theorem 1.1 and spans the vector bundle t7(TM). N is called the natural
lightlike transversal vector bundle of M [1].
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Theorem 1.2. Let M"*! be a Monge hypersurface given by the transformation

YxX1, ooy Xa1) = (F (X100 Xna)s X15 e vy Xna1)
in the semi-Euclidean space R}, M"*! is lightlike iff

n+l

Za,-Fi_ =1, (1.1)

i=1

where
o = -1, 1<i<qg-1,
t I, g<i<n+l,

and F,, is the partial derivative of the function F with respect to x;fori=1,2,...,n+1[1].

Proposition 1.2. Let M™*! be a lightlike Monge hypersurface given by the transformation

w(xl,---,xml) = (F(.X'],...,.X',H_]), .X],...,X,H_])

in the semi-Euclidean space RZ*Z. The lightlike mean curvature of M""! with respect to its normal

section & is given by
n+1

Hg = Z €in,~x,-,

i=1

where
{—L 1<i<qg-1,
E = .
I, g<i<n+]1,

and F .y, is the second order partial derivative of the function F with respectto x; (i=1,2, ..., n+1) [11].

Corollary 1.1. Let M"*! be a lightlike Monge hypersurface given by the transformation

Y1y ooy Xa1) = (F (X1 ey Xns)s X1s e vy Xna1)
in the semi-Euclidean space RZ”. M"™" is minimal iff

n+1

D el =0,

i=1

where
{—L 1<i<qg-1,
E = .
1, g<i<n+1,

and F ., is the second order partial derivative of the function F with respect to x; (i=1, 2, .. ,n+1) [11].

Homothetical and translation hypersurfaces are special Monge hypersurfaces. Many studies have
been carried out with these hypersurfaces until today [11-16].

In semi-Euclidean space RZ*Z, homothetical and translation hypersurfaces are submanifolds with
one codimension given by

n+l1

l//(x17‘-'7xn+1) = (F(X],...,xn+]), x]""7xn+l)$ F(.X],...,.X,,H_]) = nﬁ(xl)
i=1
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and
n+1
l/’(xl’ s e ’xn+1) = (F(xl’ LRCI ’xn+1)’ xl» LRI ,xn+1)’ F(xh .o ’xn+1) = Z ,fi(xi)a
i=1
where fi, f>,..., fur1 are smooth functions, respectively. Each function f; depends on the one real

variable x; and is different from zero, for 1 < i < n + 1. Or else these hypersurfaces are locally the
hyperplanes.

In the semi-Euclidean space RZ*Z, homothetical and translation graphs are (n + 1)-dimensional
Monge hypersurfaces given by

WX, Xpa1) = (F(X1, o0y Xpg1)s X1 oo Xpi1)s FQxp, .00, Xpg1) = l_[fi(xi)ﬁm(u)
i=1
and
l//(X], .. -’xn+1) = (F(X], = -’xn+1)a xla' L axn+1)’ F(xl’ .. -’xn+1) = Zﬁ(xl) +f;’l+1(u)7
i=1

n+1

where u = ) ¢;x;, ¢; are constants, ¢,,; # 0 and each f; is a smooth function of one real variable for
i=1

i=1,2,...,n+ 1, respectively.

In [11], author proved that homothetical lightlike hypersurfaces are minimal. And than translation
and homothetical lightlike hypersurfaces have been shown to be minimal by getting that they are locally
the hyperplanes in the semi-Euclidean space [12].

In this paper we study homothetical and translation lightlike (degenerate) graphs which are
generalizations of homothetical and translation lightlike (degenerate) hypersurfaces, respectively. We
prove that all homothetical and all translation lightlike (degenerate) graphs are locally the hyperplanes.
Also, both of these graphs are minimal.

2. Homothetical lightlike (degenerate) graphs of semi-Euclidean spaces

Previously one showed that every homothetical lightlike hypersurface is locally a hyperplane [12].
Now we will prove that a homothetical lightlike graph is locally a hyperplane in the following theorem.

Theorem 2.1. Let M™*! be an (n+1)-dimensional homothetical graph of the semi-Euclidean space RZ”
determined by the following equations

w(xl’ ey xn+1) = (F(Xl, ey xn+1)7 Xlyeeos X,H.l), F(.X1, ey xn+1) = 1_[ f‘j(-xj)f;1+1(u)7 (21)
j=1

n+1 n+1

where u = ), c;x;, c¢; are constants forall 1 < i < n+ 1, with ¢,.y # 0 and ), .s‘,-cl.2 > 0. M™! s
i=1 i=1

lightlike, then it is locally a hyperplane.

Proof. Partial derivatives of the function F with respect to x; are given by

n+1 n n

Fi=f | fi+e] | ffims Fra=con| | ifie (2.2)
j=1 j=1 j=1
J#L
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for 1 <i < n. Substitute this equations into (1.1), then we obtain the equation

n n+l
1

— (2.3)
i

where
o = -1, 1<i<qg-1,
t I, g<i<n+l,

< i < n. Otherwise F = 0.

and F # 0 in any point. Note that each function f; is non-zero for 1
Derivative of the Eq (2.3) with respect to u, we get

n n+l
Z ];2 ﬁl+1fn+l + ZEJ,C n+1Jn+1 + Zszcz (fn+1 + ﬁl+1f;1+1) (2‘4)

Note that f,,; f,; .1 # 0, otherwise M"*! is a homothetical hypersurface. If we divide both sides of the
Eq (2.4) by fon1f,,, # 0, then we get

n+1 / / 7
Ji (f v 1)
31— " £iC; n+l gio;l |l 4ol |, (2.5)
Z f Z fre Z AV
Derivative of the Eq (2.5) with respect to u, we find
© fi S S fe |
Zgl i e e b I (2.6)
f;z+1 =1 f fn+1 fn+1 u
According to the Eq (2.6), we get following the cases to consider:

Casel. f,, =
Since f;;/n =0, then
fioo=aand fo =au+b (2.7)

with constants a # 0,b. If @ = 0, then M"*! is a homothetical hypersurface. Substitute this equations
into (2.6), then we find
n f' a2
ot ———— = (. 2.8
;gcﬁ(au+b)2 (2.8)
Since a # 0, then we have

= 0. (2.9)

=

n
§ EiC;
i=1

Since each f; depends on a different variable, from the Eq (2.9), each function f—’ is constant for 1 <

i < n. Thus, we can write

—=a;, 1<i<n, (2.10)
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with a constant a;. From the Eqs (2.9) and (2.10), we have

n

Z sicia; = 0. 2.11)

i=1
Substitute the Eqs (2.7) and (2.10) into (2.4), then we obtain

n n

Z s,-a?(au +b)+a Z gicia; = 0. (2.12)

i=1 i=1

From (2.11) and (2.12), we get

n

Z siaf(au +b)=0.

i=1
Since au + b # 0, we have

n

> eat =0. (2.13)
i=1
Substitute the Eqs (2.7) and (2.10) into (2.3), then we obtain
n n+l1 n 1
Z sia?(au +b)? +d* Z 8iCl-2 + 2a Z gicia(au +b) = —. (2.14)
i=1 i=1 i=1 I1 fi2

=1

From (2.11), (2.13) and (2.14), we get

n+l 1
@) it = —. (2.15)
i=1 [1/?
i=1

Since the left side of this equation is constant, the right side has to be constant. Also each function f;
is constant for 1 < i < n. From (2.15), we can write

1 n+l
for1(w) =au+b = u+b with u = ZCiXi (2.16)
|H?:1 fz| ?:11 8iC,~2 i=1
and
1 n+1
(X1 X)) = (= ) eiXi + B, X1, Xi), 2.17)

n+1 i=1
Y &ict
i=1

n n+1

where B = b [] f;, ¢; are constants for 1 <i < n+ 1 with ¢,,;; # 0 and )] 8,~cf > 0. Therefore, in this
i=1 i=1

case the graph M"*! is locally a hyperplane.

Case 2. f  #0.

From fnJr , # 0, according to the Eq (2.6), we have two possibilities.
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q ’ 7 Z

/,
Case 2a. Assume that ( nrl oy f'f“ = 0. Then there is a constant m, such that === Jus + f'f” =
Josi f;1+1 u ’“’,1 fn+/}
: : . : ., f
Without loss of generality, suppose that m = 0. Then we get the differential equation =% + f’f” =0.
n+l n+l1

By solving the differential equation, we find

Jor1(u) = dy N2u — dy, (2.18)

with some constants d; # 0 and d,. If d; = 0, then f,,,(«#) would be vanish. From (2.18), we get

g 4d?
(jz:) = o _1612)3 £ 0. (2.19)

n+l
From (2.6) and (2.19), we get Y, &;c; = 0. Thus, we have a contradiction.
i=1

/ /!
fn+l f;;+l] : ntl
u

Case 2b. Assume that ( + = # 0. Since Y, g;c? # 0, if we rearrange the Eq (2.6), then there is
i=1

n+l n+l1
a constant S such that

Z 81szl (fn+1 .

- n+l d "’
Z 81‘0,' (fn+l + fn+l)
u

= 5. (2.20)

=1 Josi f,;+1
We assume that 5 # 0. From the Eq (2.20), we can write

n n+1

> g,c, = -8 Z &iC; 2.21)

i=1

Since the right side of this equation is constant, the left side has to be constant. Also there are constants
a; such that the functions

g

Ji
fi
forall 1 <i < n.From (2.21) and (2.22), we obtain

= a, (2.22)

n+l

Z siciai = —f3 Z &ic’ (2.23)

i=1

If we subtract 2| from this equation, then

n

1
2 2
Cpyp = — E gi(cia; + Bc;). (2.24)
+1 8n+1ﬁ P ﬁ

Also, from this equation we can find c,,; = O for suitable constants 3, a;, ¢;, with 1 < i < n. This is a
contradiction with the definition of the homothetical graph.
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q

Let 8 be zero in the Eq (2.20). From this equation, we get
Ji

Fre
" =dand = =g, (225
o I :

with d # 0, a; constants for 1 < i < n. If d = 0, then fr;/+1 = 0. Because of the contradiction, d is
different from zero. Substitute the equations in (2.25) into (2.5), then we obtain

n n+l

D aat+d ) ect =0. (2.26)
i=1

i=1
If we subtract ¢2_ | from this equation, then

2 1

Cn+l -

gi(a +dc?). (2.27)
En+l d ;

Also, from this equation we can find c,,; = 0 for suitable constants d, a;, ¢;, with 1 < i < n. This is
a contradiction with the definition of the homothetical graph. Thus fn+1 # 0 1s not possible. Also the
proof is completed. O

Corollary 2.1. Homothetical lightlike (degenerate) graphs are minimal in the semi-Euclidean
space R},

3. Translation lightlike (degenerate) graphs of semi-Euclidean spaces

In [12] one showed that every translation lightlike hypersurface is locally a hyperplane. Now we
will prove that a translation lightlike graph is locally a hyperplane in the following theorem.

Theorem 3.1. Let M"*! be an (n + 1)-dimensional translation graph of RZ” determined by following
equations

lﬁ(xl, o 9~xn+l) = (F(.Xl,. .. ’xn+1)a X1y oo 9xn+l)9 F(.XI,. .. ’-xn+1) = Zﬁ('xl) +ﬁl+l(u)9 (31)
i=1

n+1 n+l
where u = ), c;x;, ¢; are constants forall 1 <i <n+1, withc, # 0 and }, 8,-01-2 # 0. M" is lightlike,
i=1 i=1

then it is locally a hyperplane.

Proof. It is easy to check that
Fi=f, +cif,s For1 = Cpei S (3.2)
for i = 1,...,n. Substitute this equations into (1.1), then we obtain the equation

n n+l

Daf+ Y wcfl + 2Zn:g,~ciﬁf,;+1 =1, (3.3)
i=1 i=1

i=1

where

{—1, 1<i<g-1
E = .
I, g<i<n+1
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and F # 0 in any point. Derivative of the Eq (3.3) with respect to u, we find

n+1

n
2 J 7’ 4 7’
Z EiCi JpsrSpe1 T Z &iCifi far1 = 0. (3.4)
=1

i=1
From this equation, we obtain

n+1

> ety + ) #ic f] =0 (3.5)
i=1

i=1
We assume that fn ’+1 # 0 and then from the Eq (3.5), we find

n+l n

D ecifr + ) &, =0. (3.6)
i=1

i=1
Derivative of the Eq (3.6) with respect to u, we obtain

n+l1

D eictfra =0, 3.7)

i=1

Since fnJrl # 0, then

n+1

Z gic; =0, (3.8)

i=1

This is a contradiction with the assumption. From the Eq (3.7) it must be fn /+1 = 0. Hence we find
Jori(w) =au+b (3.9)

with constants a # 0,b. If a = 0, then M™*! is a translation hypersurface. Substitute f,, (1) = au + b
into the Eq (3.3), we get

n n+1 n

et +a ) ac+2a) scif, = 1. (3.10)

i=1 i=1 i=1

Derivative of (3.10) with respect to x; for all i = 1, ..., n, we obtain
(f. +ac)f, =0.
According to this equation, we get
fi+ac;i=0 or f =0.

Also we obtain

i = —acix; + b;, 3.11)
where b; are constants for all i = 1, ..., n. Substitute (3.9) and (3.11) into (3.3), then we obtain
1
a==+ . (3.12)
Cn+l
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Substitute (3.9), (3.11) and (3.12) into (3.1), then we have

n+l1

F(xy,...,x41) = Z Silxi) + fn+1(Z CiXj) = £Xp41 + B
i=1 i=1

and
w(xla e ’xn+1) = (ixn+1 + B’ xl’ x27 e axn+1)7 (3'13)

n n+1

where B = b+ ), b;, c¢; are constants forall 1 <i <n+ 1 with¢,,; # 0 and }; sicf # 0. Also, the
i=1 i=1

translation lightlike graph M"*! is locally a hyperplane in the semi-Euclidean space. O

Corollary 3.1. Translation lightlike (degenerate) graphs are minimal in the semi-Euclidean
space R}*2.

4. Conclusions

In this paper, homothetical and translation lightlike (degenerate) graphs, which are generalizations
of homothetical and translation lightlike (degenerate) hypersurfaces are investigated in the semi-
Euclidean space R’;*z, respectively. We prove that all homothetical and all translation lightlike
(degenerate) graphs are locally the hyperplanes. As a result, both of these graphs are minimal.
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