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1. Introduction and preliminaries

Lightlike (degenerate, null) submanifolds of a semi-Riemannian manifold have a very important
place in physics. Especially, with its use in general relativity, it has attracted the attention of many
scientists and there are many studies on this subject. Lightlike submanifolds were extensively studied
by Duggal and Bejancu [1]. Semi-Riemanian submanifolds whose induced metric degenerates are
called lightlike submanifolds. Lightlike hypersurfaces are lightlike submanifolds in semi-Euclidean
space and have been studied by many mathematicians [1–10].

Let M be a hypersurface of an (n + 2)-dimensional semi-Riemannian manifold M of index q ∈
{1, . . . , n + 1}, n > 0. Let g be the semi-Riemannian metric on M. g induces on M a symmetric tensor
field g of type (0,2). The radical (null) space of TuM is

Rad TuM = { ξu ∈ TuM : gu(ξu, Xu) = 0, ∀Xu ∈ TuM},

where TuM is the tangent space to M at u ∈ M. Since

TuM⊥ = {Vu ∈ TuM : gu(Vu,Wu) = 0, ∀Wu ∈ TuM},

we have
Rad TuM = TuM ∩ TuM⊥ [1].
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Definition 1.1. Let M be a hypersurface of an (n + 2)-dimensional semi-Riemannian manifold M,

n > 0. If Rad TuM , {0} for any u ∈ M, M is called a lightlike (degenerate) hypersurface of M [1].

If M is a lightlike hypersurface of M, TuM⊥ is an one-dimensional vector subspace of the tangent
space TuM. Each m-dimensional subspace in TuM that does not contain the subspace TuM⊥ is
orthogonal to TuM⊥ and called a screen space at point u. The vector bundle that is constituted by
choosing a screen space each point of M is said to be a screen distribution on M, denoted by S (T M).
Thus we have

T M = S (T M)⊥T M⊥.

T M�M is a vector bundle that has M as base space and assigns TuM to each point u of M. gu is
non-degenerate on S (TuM). If a subspace is non-degenerate, its complementary orthogonal subspace
is also non-degenerate and is uniquely determined. Thus, the vector bundle that is determined by the
complementary orthogonal subspace is called the orthogonal complementary vector bundle to S (T M)
in T M�M, denoted by S (T M)⊥. Also we have

T M�M = S (T M)⊥ S (T M)⊥ [1].

Theorem 1.1. Let (M, g, S (T M) ) be a lightlike hypersurface of a semi-Riemannian manifold (M, g).
Then there exists a unique vector bundle tr(T M) of rank 1 over M, such that for any non-zero ξ ∈
Γ(T M⊥) on a coordinate neighbourhoodU ∈ M, there exists a unique section N of tr(T M) onU with
the following properties:

g(N, ξ) = 1,

and
g(N,N) = g(N,W) = 0, ∀W ∈ Γ(S (T M)�U).

The space that is the union of subspaces spanned by the vector Nu at each point u ∈ M is a lightlike
vector bundle and is called the lightlike transversal vector bundle of M with respect to S (T M). It is
denoted by tr(T M). tr(T M)u is the subspace spanned by the vector Nu. Hence we have

T M�M = S (T M)⊥ (T M⊥ ⊕ tr(T M)) = T M ⊕ tr(T M) [1].

Definition 1.2. Let (M, g, S (T M)) be a lightlike hypersurface of an (n + 2)-dimensional semi-
Riemannian manifold (M, g) and O be the Levi-Civita connection on M with respect to g. If
X,Y ∈ Γ(T M), then ∇XY ∈ Γ(T M). Using the decomposition T M�M = T M ⊕ tr(T M), we obtain
the formulas

∇XY = ∇XY + h(X,Y)

and
∇XV = −AV X + ∇t

XV,

for any X,Y ∈ Γ(T M) and V ∈ Γ(tr(T M)), where ∇XY and AV X belong to Γ(T M) while h(X,Y)
and ∇t

XV belong to Γ(tr(T M)). It is easy to check that ∇ is a torsion-free linear form on M , h is a
symmetric F (M)-bilinear form on Γ(T M), which has range Γ(tr(T M)), AV is a F (M)-linear operator
on Γ(T M) and ∇t is a linear connection on the lightlike transversal vector bundle tr(T M). We call ∇
and ∇t the induced connections on M and tr(T M), respectively. Consistent with the classical theory
of Riemannian hypersurfaces we call h and AV the second fundamental form and the shape operator
respectively, of the lightlike immersion of M in M. Also, we name the above equations the Gauss and
the Weingarten formulae, respectively [1].
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Definition 1.3. Let (M, g, S (T M)) be a lightlike hypersurface of an (n + 2)-dimensional semi-
Riemannian manifold (M, g). Next, if P denotes the projection morphism of T M on S (T M) with
respect to the decomposition T M = S (T M)⊥T M⊥, we obtain

∇XPY =
∗

∇XPY +
∗

h(X, PY), ∀X,Y ∈ Γ(T M).

and
∇XU = −

∗

AU X +
∗

∇
t

XU, U ∈ Γ(T M⊥),

where
∗

∇XPY and
∗

AU X belong to Γ(S (T M)) while
∗

h(X, PY) and
∗

∇
t

XU belong to Γ(T M⊥). It follows

that
∗

∇ and
∗

∇
t

are linear connections on vector bundles S (T M) and T M⊥ respectively,
∗

h is a Γ(T M⊥)-

valued F (M)-bilinear form on Γ(T M)×Γ(S (T M)) and
∗

AU is Γ(S (T M))-valued F (M)-linear operator

on Γ(T M). We call
∗

h and
∗

AU the second fundamental form and the shape operator of the screen
distribution S (T M), respectively. Also, the above equations are the Gauss and the Weingarten equation
for the screen distribution S (T M) [1].

Proposition 1.1. On any lightlike Monge hypersurfaces M of Rn+2
q , the shape operators AN and

∗

Aξ of
M and of the natural screen distribution are related by

AN =
1
2

∗

Aξ [1].

Definition 1.4. Let ξ be a normal null section. The trace of −
∗

Aξ is called the lightlike mean curvature
Hξ on M associated with ξ. Then

Hξ = trace(−
∗

Aξ) = −trace(
∗

Aξ).

One of the good properties of the lightlike mean curvature is that it does not depend on the screen
distribution chosen, but only of the local normal null section ξ [2].

Let y0, y1, . . . , yn+1 be coordinate functions in Rn+2 and x1, x2, . . . , xn+1 be coordinate functions
in Rn+1. Let M be a lightlike Monge hypersurface determined by the transformation

ψ(x1, x2, . . . , xn+1) = (F(x1, x2, . . . , xn+1), x1, x2, . . . , xn+1),

where F : D→ R is a smooth function and D is an open subset of Rn+1. We have

∂α ◦ ψ = Fxα
∂

∂y0
◦ ψ +

∂

∂yα
◦ ψ, 1 ≤ α ≤ n + 1,

where ∂1, ∂2, . . . , ∂n+1 are coordinate frame fields on M. Since g(∂α ◦ ψ, ξ) = 0 for each α, we have

ξ ◦ ψ =
∂

∂y0
◦ ψ −

q−1∑
s=1

Fxs

∂

∂ys
◦ ψ +

n+1∑
α=q

Fxα
∂

∂yα
◦ ψ,

where ξ is the normal vector field on M. The vector field N determined by the equation

N = −
∂

∂y0
+

1
2
ξ

satisfies the conditions of Theorem 1.1 and spans the vector bundle tr(T M). N is called the natural
lightlike transversal vector bundle of M [1].
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Theorem 1.2. Let Mn+1 be a Monge hypersurface given by the transformation

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1)

in the semi-Euclidean space Rn+2
q . Mn+1 is lightlike iff

n+1∑
i=1

εiF2
xi

= 1, (1.1)

where

εi =

{
−1, 1 ≤ i ≤ q − 1,

1, q ≤ i ≤ n + 1,

and Fxi is the partial derivative of the function F with respect to xi for i = 1, 2, . . . , n + 1 [1].

Proposition 1.2. Let Mn+1 be a lightlike Monge hypersurface given by the transformation

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1)

in the semi-Euclidean space Rn+2
q . The lightlike mean curvature of Mn+1 with respect to its normal

section ξ is given by

Hξ =

n+1∑
i=1

εiFxi xi ,

where

εi =

{
−1, 1 ≤ i ≤ q − 1,

1, q ≤ i ≤ n + 1,

and Fxi xi is the second order partial derivative of the function F with respect to xi (i=1, 2, . . ., n+1) [11].

Corollary 1.1. Let Mn+1 be a lightlike Monge hypersurface given by the transformation

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1)

in the semi-Euclidean space Rn+2
q . Mn+1 is minimal iff

n+1∑
i=1

εiFxi xi = 0,

where

εi =

{
−1, 1 ≤ i ≤ q − 1,
1, q ≤ i ≤ n + 1,

and Fxi xi is the second order partial derivative of the function F with respect to xi (i=1, 2, . . .,n+1) [11].

Homothetical and translation hypersurfaces are special Monge hypersurfaces. Many studies have
been carried out with these hypersurfaces until today [11–16].

In semi-Euclidean space Rn+2
q , homothetical and translation hypersurfaces are submanifolds with

one codimension given by

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1), F(x1, . . . , xn+1) =

n+1∏
i=1

fi(xi)
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and

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1), F(x1, . . . , xn+1) =

n+1∑
i=1

fi(xi),

where f1, f2, . . . , fn+1 are smooth functions, respectively. Each function fi depends on the one real
variable xi and is different from zero, for 1 ≤ i ≤ n + 1. Or else these hypersurfaces are locally the
hyperplanes.

In the semi-Euclidean space Rn+2
q , homothetical and translation graphs are (n + 1)-dimensional

Monge hypersurfaces given by

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1), F(x1, . . . , xn+1) =

n∏
i=1

fi(xi) fn+1(u)

and

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1), F(x1, . . . , xn+1) =

n∑
i=1

fi(xi) + fn+1(u),

where u =
n+1∑
i=1

cixi, ci are constants, cn+1 , 0 and each fi is a smooth function of one real variable for

i = 1, 2, . . . , n + 1, respectively.
In [11], author proved that homothetical lightlike hypersurfaces are minimal. And than translation

and homothetical lightlike hypersurfaces have been shown to be minimal by getting that they are locally
the hyperplanes in the semi-Euclidean space [12].

In this paper we study homothetical and translation lightlike (degenerate) graphs which are
generalizations of homothetical and translation lightlike (degenerate) hypersurfaces, respectively. We
prove that all homothetical and all translation lightlike (degenerate) graphs are locally the hyperplanes.
Also, both of these graphs are minimal.

2. Homothetical lightlike (degenerate) graphs of semi-Euclidean spaces

Previously one showed that every homothetical lightlike hypersurface is locally a hyperplane [12].
Now we will prove that a homothetical lightlike graph is locally a hyperplane in the following theorem.

Theorem 2.1. Let Mn+1 be an (n+1)-dimensional homothetical graph of the semi-Euclidean spaceRn+2
q

determined by the following equations

ψ(x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1), F(x1, . . . , xn+1) =

n∏
j=1

f j(x j) fn+1(u), (2.1)

where u =
n+1∑
i=1

cixi, ci are constants for all 1 ≤ i ≤ n + 1, with cn+1 , 0 and
n+1∑
i=1
εic2

i > 0. Mn+1 is

lightlike, then it is locally a hyperplane.

Proof. Partial derivatives of the function F with respect to xi are given by

Fi = f
′

i

n+1∏
j=1
j,i

f j + ci

n∏
j=1

f j f
′

n+1, Fn+1 = cn+1

n∏
j=1

f j f
′

n+1 (2.2)
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for 1 ≤ i ≤ n. Substitute this equations into (1.1), then we obtain the equation

n∑
i=1

εi
f
′2

i

f 2
i

f 2
n+1 +

n+1∑
i=1

εic2
i f
′2
n+1 + 2

n∑
i=1

εici
f
′

i

fi
fn+1 f

′

n+1 =
1

n∏
j=1

f 2
i

, (2.3)

where

εi =

{
−1, 1 ≤ i ≤ q − 1,
1, q ≤ i ≤ n + 1,

and F , 0 in any point. Note that each function fi is non-zero for 1 ≤ i ≤ n. Otherwise F = 0.
Derivative of the Eq (2.3) with respect to u, we get

n∑
i=1

εi
f
′2

i

f 2
i

fn+1 f
′

n+1 +

n+1∑
i=1

εic2
i f
′

n+1 f
′′

n+1 +

n∑
i=1

εici
f
′

i

fi
( f
′2

n+1 + fn+1 f
′′

n+1) = 0. (2.4)

Note that fn+1 f
′

n+1 , 0, otherwise Mn+1 is a homothetical hypersurface. If we divide both sides of the
Eq (2.4) by fn+1 f

′

n+1 , 0, then we get

n∑
i=1

εi
f
′2

i

f 2
i

+

n+1∑
i=1

εic2
i

f
′′

n+1

fn+1
+

n∑
i=1

εici
f
′

i

fi

 f
′

n+1

fn+1
+

f
′′

n+1

f ′n+1

 = 0. (2.5)

Derivative of the Eq (2.5) with respect to u, we find

n+1∑
i=1

εic2
i

 f
′′

n+1

fn+1


u

+

n∑
i=1

εici
f
′

i

fi

 f
′

n+1

fn+1
+

f
′′

n+1

f ′n+1


u

= 0. (2.6)

According to the Eq (2.6), we get following the cases to consider:

Case 1. f
′′

n+1 = 0.
Since f

′′

n+1 = 0, then
f
′

n+1 = a and fn+1 = au + b (2.7)

with constants a , 0, b. If a = 0, then Mn+1 is a homothetical hypersurface. Substitute this equations
into (2.6), then we find

n∑
i=1

εici
f
′

i

fi

a2

(au + b)2 = 0. (2.8)

Since a , 0, then we have
n∑

i=1

εici
f
′

i

fi
= 0. (2.9)

Since each fi depends on a different variable, from the Eq (2.9), each function
f
′

i

fi
is constant for 1 ≤

i ≤ n. Thus, we can write
f
′

i

fi
= ai, 1 ≤ i ≤ n, (2.10)
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with a constant ai. From the Eqs (2.9) and (2.10), we have

n∑
i=1

εiciai = 0. (2.11)

Substitute the Eqs (2.7) and (2.10) into (2.4), then we obtain

n∑
i=1

εia2
i (au + b) + a

n∑
i=1

εiciai = 0. (2.12)

From (2.11) and (2.12), we get
n∑

i=1

εia2
i (au + b) = 0.

Since au + b , 0, we have
n∑

i=1

εia2
i = 0. (2.13)

Substitute the Eqs (2.7) and (2.10) into (2.3), then we obtain

n∑
i=1

εia2
i (au + b)2 + a2

n+1∑
i=1

εic2
i + 2a

n∑
i=1

εiciai(au + b) =
1

n∏
i=1

f 2
i

. (2.14)

From (2.11), (2.13) and (2.14), we get

a2
n+1∑
i=1

εic2
i =

1
n∏

i=1
f 2
i

. (2.15)

Since the left side of this equation is constant, the right side has to be constant. Also each function fi

is constant for 1 ≤ i ≤ n. From (2.15), we can write

fn+1(u) = au + b =
1∣∣∣∏n

i=1 fi

∣∣∣ √∑n+1
i=1 εic2

i

u + b with u =

n+1∑
i=1

cixi (2.16)

and

ψ(x1, . . . , xn+1) = (±
1√

n+1∑
i=1
εic2

i

n+1∑
i=1

cixi + B, x1, . . . , xn+1), (2.17)

where B = b
n∏

i=1
fi, ci are constants for 1 ≤ i ≤ n + 1 with cn+1 , 0 and

n+1∑
i=1
εic2

i > 0. Therefore, in this

case the graph Mn+1 is locally a hyperplane.

Case 2. f
′′

n+1 , 0.
From f

′′

n+1 , 0, according to the Eq (2.6), we have two possibilities.
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Case 2a. Assume that
 f

′

n+1

fn+1
+

f
′′

n+1

f ′n+1


u

= 0. Then there is a constant m, such that
f
′

n+1

fn+1
+

f
′′

n+1

f ′n+1

= m.

Without loss of generality, suppose that m = 0. Then we get the differential equation
f
′

n+1

fn+1
+

f
′′

n+1

f ′n+1

= 0.

By solving the differential equation, we find

fn+1(u) = d1

√
2u − d2, (2.18)

with some constants d1 , 0 and d2. If d1 = 0, then fn+1(u) would be vanish. From (2.18), we get f
′′

n+1

fn+1


u

=
4d2

1

(2u − d2)3 , 0. (2.19)

From (2.6) and (2.19), we get
n+1∑
i=1
εic2

i = 0. Thus, we have a contradiction.

Case 2b. Assume that
 f

′

n+1

fn+1
+

f
′′

n+1

f ′n+1


u

, 0. Since
n+1∑
i=1
εic2

i , 0, if we rearrange the Eq (2.6), then there is

a constant β such that

−

n∑
i=1
εici

f
′

i

fi
n+1∑
i=1
εic2

i

=

 f
′′

n+1

fn+1


u f

′

n+1

fn+1
+

f
′′

n+1

f ′n+1


u

= β. (2.20)

We assume that β , 0. From the Eq (2.20), we can write

n∑
i=1

εici
f
′

i

fi
= −β

n+1∑
i=1

εic2
i . (2.21)

Since the right side of this equation is constant, the left side has to be constant. Also there are constants
ai such that the functions

f
′

i

fi
= ai, (2.22)

for all 1 ≤ i ≤ n. From (2.21) and (2.22), we obtain

n∑
i=1

εiciai = −β

n+1∑
i=1

εic2
i . (2.23)

If we subtract c2
n+1 from this equation, then

c2
n+1 = −

1
εn+1β

n∑
i=1

εi(ciai + βc2
i ). (2.24)

Also, from this equation we can find cn+1 = 0 for suitable constants β, ai, ci, with 1 ≤ i ≤ n. This is a
contradiction with the definition of the homothetical graph.
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Let β be zero in the Eq (2.20). From this equation, we get

f
′′

n+1

fn+1
= d and

f
′

i

fi
= ai (2.25)

with d , 0, ai constants for 1 ≤ i ≤ n. If d = 0, then f
′′

n+1 = 0. Because of the contradiction, d is
different from zero. Substitute the equations in (2.25) into (2.5), then we obtain

n∑
i=1

εia2
i + d

n+1∑
i=1

εic2
i = 0. (2.26)

If we subtract c2
n+1 from this equation, then

c2
n+1 = −

1
εn+1d

n∑
i=1

εi(a2
i + dc2

i ). (2.27)

Also, from this equation we can find cn+1 = 0 for suitable constants d, ai, ci, with 1 ≤ i ≤ n. This is
a contradiction with the definition of the homothetical graph. Thus f

′′

n+1 , 0 is not possible. Also the
proof is completed. �

Corollary 2.1. Homothetical lightlike (degenerate) graphs are minimal in the semi-Euclidean
space Rn+2

q .

3. Translation lightlike (degenerate) graphs of semi-Euclidean spaces

In [12] one showed that every translation lightlike hypersurface is locally a hyperplane. Now we
will prove that a translation lightlike graph is locally a hyperplane in the following theorem.

Theorem 3.1. Let Mn+1 be an (n + 1)-dimensional translation graph of Rn+2
q determined by following

equations

ψ (x1, . . . , xn+1) = (F(x1, . . . , xn+1), x1, . . . , xn+1), F(x1, . . . , xn+1) =

n∑
i=1

fi(xi) + fn+1(u), (3.1)

where u =
n+1∑
i=1

cixi, ci are constants for all 1 ≤ i ≤ n + 1, with cn , 0 and
n+1∑
i=1
εic2

i , 0. Mn+1 is lightlike,

then it is locally a hyperplane.

Proof. It is easy to check that
Fi = f

′

i + ci f
′

n, Fn+1 = cn+1 f
′

n+1 (3.2)

for i = 1, ..., n. Substitute this equations into (1.1), then we obtain the equation

n∑
i=1

εi f
′2

i +

n+1∑
i=1

εic2
i f
′2
n+1 + 2

n∑
i=1

εici f
′

i f
′

n+1 = 1, (3.3)

where

εi =

{
−1, 1 ≤ i ≤ q − 1

1, q ≤ i ≤ n + 1
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and F , 0 in any point. Derivative of the Eq (3.3) with respect to u, we find

n+1∑
i=1

εic2
i f
′

n+1 f
′′

n+1 +

n∑
i=1

εici f
′

i f
′′

n+1 = 0. (3.4)

From this equation, we obtain  n+1∑
i=1

εic2
i f
′

n+1 +

n∑
i=1

εici f
′

i

 f
′′

n+1 = 0. (3.5)

We assume that f
′′

n+1 , 0 and then from the Eq (3.5), we find

n+1∑
i=1

εic2
i f
′

n+1 +

n∑
i=1

εici f
′

i = 0. (3.6)

Derivative of the Eq (3.6) with respect to u, we obtain

n+1∑
i=1

εic2
i f
′′

n+1 = 0. (3.7)

Since f
′′

n+1 , 0, then
n+1∑
i=1

εic2
i = 0. (3.8)

This is a contradiction with the assumption. From the Eq (3.7) it must be f
′′

n+1 = 0. Hence we find

fn+1(u) = au + b (3.9)

with constants a , 0, b. If a = 0, then Mn+1 is a translation hypersurface. Substitute fn+1(u) = au + b
into the Eq (3.3), we get

n∑
i=1

εi f
′2

i + a2
n+1∑
i=1

εic2
i + 2a

n∑
i=1

εici f
′

i = 1. (3.10)

Derivative of (3.10) with respect to xi for all i = 1, ..., n, we obtain

( f
′

i + aci) f
′′

i = 0.

According to this equation, we get

f
′

i + aci = 0 or f
′′

i = 0.

Also we obtain
fi = −acixi + bi, (3.11)

where bi are constants for all i = 1, ..., n. Substitute (3.9) and (3.11) into (3.3), then we obtain

a = ±
1

cn+1
. (3.12)
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Substitute (3.9), (3.11) and (3.12) into (3.1), then we have

F(x1, . . . , xn+1) =

n∑
i=1

fi(xi) + fn+1(
n+1∑
i=1

cixi) = ±xn+1 + B

and
ψ(x1, . . . , xn+1) = (±xn+1 + B, x1, x2, . . . , xn+1), (3.13)

where B = b +
n∑

i=1
bi, ci are constants for all 1 ≤ i ≤ n + 1 with cn+1 , 0 and

n+1∑
i=1
εic2

i , 0. Also, the

translation lightlike graph Mn+1 is locally a hyperplane in the semi-Euclidean space. �

Corollary 3.1. Translation lightlike (degenerate) graphs are minimal in the semi-Euclidean
space Rn+2

q .

4. Conclusions

In this paper, homothetical and translation lightlike (degenerate) graphs, which are generalizations
of homothetical and translation lightlike (degenerate) hypersurfaces are investigated in the semi-
Euclidean space Rn+2

q , respectively. We prove that all homothetical and all translation lightlike
(degenerate) graphs are locally the hyperplanes. As a result, both of these graphs are minimal.
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