In this manuscript, we introduce the following novel concepts for real functions related to $ f $-convergence and $ f $-statistical convergence: $ f $-statistical continuity, $ f $-statistical derivative, and $ f $-strongly Cesàro derivative. In the first subsection of original results, the $ f $-statistical continuity is related to continuity. In the second subsection, the $ f $-statistical derivative is related to the derivative. In the third and final subsection of results, the $ f $-strongly Cesàro derivative is related to the strongly Cesàro derivative and to the $ f $-statistical derivative. Under suitable conditions of the modulus $ f $, several characterizations involving the previous concepts have been obtained.
Citation: Bilal Altay, Francisco Javier García-Pacheco, Ramazan Kama. On $ f $-strongly Cesàro and $ f $-statistical derivable functions[J]. AIMS Mathematics, 2022, 7(6): 11276-11291. doi: 10.3934/math.2022629
In this manuscript, we introduce the following novel concepts for real functions related to $ f $-convergence and $ f $-statistical convergence: $ f $-statistical continuity, $ f $-statistical derivative, and $ f $-strongly Cesàro derivative. In the first subsection of original results, the $ f $-statistical continuity is related to continuity. In the second subsection, the $ f $-statistical derivative is related to the derivative. In the third and final subsection of results, the $ f $-strongly Cesàro derivative is related to the strongly Cesàro derivative and to the $ f $-statistical derivative. Under suitable conditions of the modulus $ f $, several characterizations involving the previous concepts have been obtained.
[1] | A. Aizpuru, M. Listán-García, F. Rambla-Barreno, Double density by moduli and statistical convergence, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 663–673. https://doi.org/10.36045/bbms/1353695907 doi: 10.36045/bbms/1353695907 |
[2] | A. Aizpuru, M. C. Listán-García, F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37 (2014), 525–530. https://doi.org/10.2989/16073606.2014.981683 doi: 10.2989/16073606.2014.981683 |
[3] | Y. Altin, H. Altinok, R. Çolak, On some seminormed sequence spaces defined by a modulus function, Kragujevac J. Math., 29 (2006), 121–132. |
[4] | Y. Altin, M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math., 31 (2005), 233–243. |
[5] | F. Başar, Summability theory and its applications, Bentham Science Publishers, 2012. https://doi.org/10.2174/97816080545231120101 |
[6] | V. K. Bhardwaj, S. Dhawan, $f$-statistical convergence of order $\alpha$ and strong Cesàro summability of order $\alpha$ with respect to a modulus, J. Inequal. Appl., 2015 (2015), 332. https://doi.org/10.1186/s13660-015-0850-x doi: 10.1186/s13660-015-0850-x |
[7] | J. Boos, Classical and modern methods in summability, Oxford: Oxford University Press, 2000. |
[8] | J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis, 8 (1988), 47–63. https://doi.org/10.1524/anly.1988.8.12.47 doi: 10.1524/anly.1988.8.12.47 |
[9] | J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Can. Math. Bull., 32 (1989), 194–198. https://doi.org/10.4153/CMB-1989-029-3 doi: 10.4153/CMB-1989-029-3 |
[10] | H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. |
[11] | M. Fekete, Viszgálatok a fourier-sorokról (research on fourier series), Math. éstermész, 34 (1916), 759–786. |
[12] | A. R. Freedman, J. J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293–305. |
[13] | J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301 |
[14] | J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43–51. |
[15] | G. Hardy, Sur la série de fourier d'une fonction á carré sommable, C. R. Acad. Sci. (Paris), 156 (1913), 1307–1309. |
[16] | M. İlkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math., 52 (2019), 225–236. https://doi.org/10.1515/dema-2019-0019 doi: 10.1515/dema-2019-0019 |
[17] | B. B. Jena, S. K. Paikray, Product of deferred Cesàro and deferred weighted statistical probability convergence and its applications to Korovkin-type theorems, Univ. Sci., 25 (2020), 409–433. |
[18] | B. B. Jena, S. K. Paikra, H. Dutta, On various new concepts of statistical convergence for sequences of random variables via deferred Cesàro mean, J. Math. Anal. Appl., 487 (2020), 123950. https://doi.org/10.1016/j.jmaa.2020.123950 doi: 10.1016/j.jmaa.2020.123950 |
[19] | R. Kama, On some vector valued multiplier spaces with statistical Cesáro summability, Filomat, 33 (2019), 5135–5147. https://doi.org/10.2298/FIL1916135K doi: 10.2298/FIL1916135K |
[20] | R. Kama, Spaces of vector sequences defined by the $f$-statistical convergence and some characterizations of normed spaces, RACSAM, 114 (2020), 74. https://doi.org/10.1007/s13398-020-00806-6 doi: 10.1007/s13398-020-00806-6 |
[21] | E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41–52. |
[22] | F. León-Saavedra, M. del C. Listán-García, F. J. P. Fernández, M. P. R. de la Rosa, On statistical convergence and strong Cesàro convergence by moduli, J. Inequal. Appl., 2019 (2019), 298. https://doi.org/10.1186/s13660-019-2252-y doi: 10.1186/s13660-019-2252-y |
[23] | M. C. Listán-García, $f$-statistical convergence, completeness and $f$-cluster points, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 235–245. https://doi.org/10.36045/bbms/1464710116 doi: 10.36045/bbms/1464710116 |
[24] | I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge, 100 (1986), 161–166. https://doi.org/10.1017/S0305004100065968 doi: 10.1017/S0305004100065968 |
[25] | I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge, 104 (1988), 141–145. https://doi.org/10.1017/S0305004100065312 doi: 10.1017/S0305004100065312 |
[26] | E. Malkowsky, E. Savas, Some $\lambda$-sequence spaces defined by a modulus, Arch. Math.-Brno, 36 (2000), 219–228. |
[27] | H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49. https://doi.org/10.2969/jmsj/00510029 |
[28] | F. Nuray, Cesàro and statistical derivative, Facta Univ. Ser. Math. Inform., 35 (2020), 1393–1398. https://doi.org/10.22190/fumi2005393n doi: 10.22190/fumi2005393n |
[29] | S. Pedersen, J. P. Sjoberg, Sequential derivatives, Real Anal. Exchange, 46 (2021), 191–206. https://doi.org/10.14321/realanalexch.46.1.0191 |
[30] | K. Raj, S. K. Sharma, Difference sequence spaces defined by a sequence of modulus functions, Proyecciones J. Math., 30 (2011), 189–199. https://doi.org/10.4067/S0716-09172011000200005 doi: 10.4067/S0716-09172011000200005 |
[31] | W. H. Ruckle, $FK$ spaces in which the sequence of coordinate vectors is bounded, Can. J. Math., 25 (1973), 973–978. https://doi.org/10.4153/CJM-1973-102-9 doi: 10.4153/CJM-1973-102-9 |
[32] | I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375. https://doi.org/10.2307/2308747 doi: 10.2307/2308747 |
[33] | I. J. Schoenberg, The integrability of certain functions and related summability methods II, Amer. Math. Monthly, 66 (1959), 562–563. https://doi.org/10.2307/2309853 doi: 10.2307/2309853 |
[34] | H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems, RACSAM, 114 (2020), 144. https://doi.org/10.1007/s13398-020-00875-7 doi: 10.1007/s13398-020-00875-7 |
[35] | H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical deferred Nörlund summability and Korovkin-type approximation theorem, Mathematics, 8 (2020), 636. https://doi.org/10.3390/math8040636 doi: 10.3390/math8040636 |
[36] | H. Steinhaus, Comptes rendus: Société polonaise de mathématique. Section de Wrocław, Colloq. Math., 2 (1949), 63–78. |
[37] | T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150. |
[38] | K. Zeller, W. Beekmann, Theorie der Limitierungsverfahren, Berlin, Heidelberg: Springer, 1970. https://doi.org/10.1007/978-3-642-88470-2 |
[39] | A. Zygmund, Trigonometric series, 3rd edition, Cambridge: Cambridge University Press, 2002, https://doi.org/10.1017/CBO9781316036587 |