Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Binary sequences and lattices constructed by discrete logarithms

  • In 1997, Mauduit and Sárközy first introduced the measures of pseudorandomness for binary sequences. Since then, many pseudorandom binary sequences have been constructed and studied. In particular, Gyarmati presented a large family of pseudorandom binary sequences using the discrete logarithms. Ten years later, to satisfy the requirement from many applications in cryptography (e.g., in encrypting "bit-maps'' and watermarking), the definition of binary sequences is extended from one dimension to several dimensions by Hubert, Mauduit and Sárközy. They introduced the measure of pseudorandomness for this kind of several-dimension binary sequence which is called binary lattices. In this paper, large families of pseudorandom binary sequences and binary lattices are constructed by both discrete logarithms and multiplicative inverse modulo p. The upper estimates of their pseudorandom measures are based on estimates of either character sums or mixed exponential sums.

    Citation: Yuchan Qi, Huaning Liu. Binary sequences and lattices constructed by discrete logarithms[J]. AIMS Mathematics, 2022, 7(3): 4655-4671. doi: 10.3934/math.2022259

    Related Papers:

    [1] Huaning Liu, Zhixiong Chen, Chenhuang Wu . Correlation measures of binary sequences derived from Euler quotients. AIMS Mathematics, 2022, 7(6): 11087-11101. doi: 10.3934/math.2022619
    [2] Kenan Doğan, Murat Şahin, Oğuz Yayla . Families of sequences with good family complexity and cross-correlation measure. AIMS Mathematics, 2025, 10(1): 38-55. doi: 10.3934/math.2025003
    [3] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [4] SAIRA, Wenxiu Ma, Suliman Khan . An efficient numerical method for highly oscillatory logarithmic-algebraic singular integrals. AIMS Mathematics, 2025, 10(3): 4899-4914. doi: 10.3934/math.2025224
    [5] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [6] Mohammed Z. Alqarni, Mohamed Abdalla . Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590
    [7] Ting Zhang, Xiaoyong Wen . Discrete generalized Darboux transformation and rational solutions for the three-field Blaszak-Marciniak lattice equation. AIMS Mathematics, 2023, 8(7): 15553-15568. doi: 10.3934/math.2023793
    [8] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [9] Tongjiang Yan, Pazilaiti Ainiwaer, Lianbo Du . On the 1-error linear complexity of two-prime generator. AIMS Mathematics, 2022, 7(4): 5821-5829. doi: 10.3934/math.2022322
    [10] Yi Wu, Duoduo Zhao . Law of the single logarithm for randomly weighted sums of dependent sequences and an application. AIMS Mathematics, 2024, 9(4): 10141-10156. doi: 10.3934/math.2024496
  • In 1997, Mauduit and Sárközy first introduced the measures of pseudorandomness for binary sequences. Since then, many pseudorandom binary sequences have been constructed and studied. In particular, Gyarmati presented a large family of pseudorandom binary sequences using the discrete logarithms. Ten years later, to satisfy the requirement from many applications in cryptography (e.g., in encrypting "bit-maps'' and watermarking), the definition of binary sequences is extended from one dimension to several dimensions by Hubert, Mauduit and Sárközy. They introduced the measure of pseudorandomness for this kind of several-dimension binary sequence which is called binary lattices. In this paper, large families of pseudorandom binary sequences and binary lattices are constructed by both discrete logarithms and multiplicative inverse modulo p. The upper estimates of their pseudorandom measures are based on estimates of either character sums or mixed exponential sums.



    Over 20 years ago, Mauduit and Sárközy (partly with coauthors) started to study pseudorandomness of binary sequences

    EN=(e1,,eN){1,+1}N,

    and developed a quantitative and constructive theory of this subject. In particular, in [1] Mauduit and Sárközy introduced the measures of pseudorandomness: The well-distribution measure of EN is defined by

    W(EN)=maxa,b,t|t1j=0ea+jb|,

    where the maximum is taken over all a, b, tN with 1aa+(t1)bN. The correlation measure of order k of EN is

    Ck(EN)=maxM,D|Mn=1en+d1en+d2en+dk|,

    where the maximum is taken over all D=(d1,,dk) and M with 0d1<<dkNM.

    The sequence is considered as a "good" pseudorandom sequence if both W(EN) and Ck(EN) (at least for small k) are "small" in terms of N. Later many pseudorandom binary sequences were given and studied by using number theoretic methods (see [2,3,4,5,6]).

    Let p be a prime number and g be a primitive root modulo p. For an integer n with gcd(n,p)=1, let ind n be the smallest non-negative integer t with gtn (mod p). That is,

    ngind   n (mod p)and0ind np2.

    We name ind (n) the discrete logarithm of n to the base g. Gyarmati [7] presented a large family of pseudorandom binary sequences using the discrete logarithms.

    Proposition 1.1. Let f(x)Fp[x] be a polynomial of degree l, and define Ep1=(e1,,ep1) by

    en={+1,if 1ind  f(n)p12,1,if p+12ind  f(n)p1 or pf(n).

    Then

    W(Ep1)<38lp1/2(logp)2.

    Moreover, suppose that at least one of the following assumptions holds:

    (i) f is irreducible;

    (ii) If f has a factorization f=φα11φα22φαuu where αiN and φi is irreducible over Fp, then there exists a number β such that exactly one or two φis have degree β;

    (iii) k=2;

    (iv) (4k)l<p or (4l)k<p.

    Then we have

    Ck(Ep1)<10lk4kp12(logp)k+1.

    The first purpose of this paper is to give large families of pseudorandom binary sequences using the discrete logarithms.

    Theorem 1.1. Let f(x)Fp[x] be a polynomial of degree l, and define Ep1=(e1,,ep1) by

    en={+1,if 1ind  (f(n)+¯n)p12,1,if p+12ind  (f(n)+¯n)p1 or pf(n)+¯n,

    where ¯n is the inverse of n modulo p such that n¯n1 (mod p) and 1¯np1. Then

    W(Ep1)deg(f)p12(logp)2.

    Moreover, if the congruence xf(x)+10 (mod p) has no solution, then for any kN we have

    Ck(Ep1)2kkdeg(f)p12(logp)k+1.

    Corollary 1.1. Suppose that p is a prime with p3 (mod 4), and f(x)=xg2(x) with g(x)Fp[x]. Define Ep1=(e1,,ep1) by

    en={+1,if 1ind  (f(n)+¯n)p12,1,if p+12ind  (f(n)+¯n)p1 or pf(n)+¯n,

    Then

    W(Ep1)deg(f)p12(logp)2.

    For any kN, we have

    Ck(Ep1)2kkdeg(f)p12(logp)k+1.

    Let f,g be polynomials over Fp. Define f(n)g(n)=f(n)g1(n) for g(n)0. Mérai [8] studied the distribution of f(n)g(n) in the residue classes modulo p and gave nontrivial upper bounds for the well-distribution measure and correlation measure. We also generalize the sequence in Theorem 1.1 by adding a simple rational function.

    Theorem 1.2. Suppose that p is a prime number and s<logp is a positive integer. Let f(x),g(x)Fp[x] and let 0a1<a2<<asp1 be integers with gcd(g(x),(xa1)(xas))=1. Define Ep=(e1,,ep) by

    en={+1if p(na1)(nas),pf(n)+g(n)(na1)(nas)and  1ind   (f(n)+g(n)(na1)(nas))p12,1otherwise.

    Then

    W(Ep)(deg(f)+deg(g)+s)p12(logp)2.

    Moreover, if the congruence (xa1)(xas)f(x)+g(x)0 (mod p) has no solution and one of the following two conditions holds:

    (i) min{s,k}2 and max{s,k}p1,

    (ii) (4k)sp or (4s)kp,

    then for any kN we have

    Ck(Ep)2kk(deg(f)+deg(g)+s)p12(logp)k+1.

    Hubert, Dartyge and Sárközy [9] wrote the first paper on pseudorandom binary lattices in 2006, since then, about 25 papers have been published in this field. One can refer to [9,10,11,12,13,14,15,16] for further related results and constructions. In [9], the definition of binary sequences is extended from one dimension to several dimensions by considering functions of type

    η: InN{+1,1},

    where InN denotes the set of the n-dimensional vectors whose all coordinates are selected from the set {0,1,,N1}:

    InN={x=(x1,,xn):x1,,xn{0,1,,N1}}.

    We say that η is an n-dimensional binary N-lattice or briefly binary lattice. Let kN and let ui (i=1,,n) be the n-dimensional unit vector whose i-coordinate is 1 and other coordinates are 0. The measure of pseudorandomness of a binary lattice is defined as follows:

    Qk(η)=maxB,d1,,dk,T|t1j1=0tnjn=0η(j1b1u1++jnbnun+d1)××η(j1b1u1++jnbnun+dk)|,

    where the maximum is taken over all n-dimensional vectors B=(b1,,bn), d1,,dk, T=(t1,,tn) whose coordinates are non-negative integers, b1,,bn are non-zero, d1,,dk are distinct, and the points j1b1u1++jnbnun+di occurring in the multiple sum belong to InN.

    A binary lattice η is said to have strong pseudorandom properties, or briefly, it is considered as a "good'' pseudorandom lattice if for fixed n, k and "large''N, the measure Qk(η) is "small'' (much smaller, than the trivial upper bound Nn). Gyarmati, Mauduit and Sárközy gave the following constructions in [11].

    Proposition 1.2. Let p be an odd prime, f(x,y)Fp[x,y] be a polynomial of degree l. Suppose that f(x,y) is square-free and it is not of the form rj=1fj(αjx+βjy), where αj,βjFp and fj(x)Fp[x] for j=1,,r. Assume that kN and one of the following conditions holds:

    a) f(x,y) is irreducible,

    b) k=2,

    c) (4l)kp.

    Define η:I2p{1,+1} by

    η(x,y)={+1,if(f(x,y),p)=1  and  1ind   f(x,y)p12,1,otherwise.

    Then we have

    Qk(η)lk4kp32(logp)k+1.

    The second purpose of this paper is to construct a large family of pseudorandom binary lattices using the discrete logarithms.

    Theorem 1.3. Let p be an odd prime, and let f(x1,,xn)Fp[x1,,xn] be a polynomial in n variables. Define η:Inp1{1,+1} by

    η(x1,,xn)={+1if (f(x1)f(xn),p)=1 and 0Rp(ind   (f(x1)f(xn))+¯x1xn)p12,1otherwise,

    where Rp(z) denotes the unique r{0,1,,p1} such that zr(mod p). Then we have

    Qk(η)2kkdeg(f)pn12(logp)2k+1.

    We need the following lemmas.

    Lemma 2.1. Let p be a prime number, and let χ be a non-principal character modulo p of order d. Suppose that f(x)Fp[x] has s distinct roots in ¯Fp, and f(x) is not the constant multiple of the d-th power of a polynomial over Fp. Let y be real number with 0<yp. Then for any xR we have

    |x<nx+yχ(f(n))|9sp12logp.

    Proof. This is Lemma 2 in [7].

    Lemma 2.2. Let p be a prime number, and let 1dp1 with dp1. Then

    χmodpχχ0χd=χ0|p12l=1χ(gl)|2dlog(d+1).

    Proof. This is Lemma 3 in [7].

    Lemma 2.3. Suppose that p is a prime number and 1δ1,,δkp2, 0d1<d2<<dk<p are integers. Let a1,,asFp be distinct numbers and let

    h(x)=(xa1)(xas).

    If one of the following two conditions holds:

    (i) min{s,k}2 and max{s,k}p1,

    (ii) (4k)sp or (4s)kp,

    then the polynomial

    H(x)=h(x+d1)p1δ1h(x+dk)p1δk

    has a (p1δu)-th root in Fp.

    Proof. From

    H(x)=((x+d1a1)(x+d1as))p1δ1××((x+dka1)(x+dkas))p1δk,

    we have if there exists a c such that

    diaj=c,i{1,,k},j{1,,s},

    has exactly one solution which is (du,av) for some 1uk,1vs, then avdu is a (p1δu)-th root of the function H(x).

    Consider the sets A={a1,a2,,as},D= {d1,d2,,dk}. It was proved in [17]HY__HY, Theorem 2] that under any of the following conditions:

    (i) min{s,k}2 and max{s,k}p1,

    (ii) (4k)sp or (4s)kp,

    there is a cZp such that

    a+d=caA,dD

    has exactly one solution. Thus the statement of the lemma follows easily from this.

    Now we prove Theorem 1.1. For 1np1 with (f(n)+¯n,p)=1 we have

    1p1χmodpp12l=1¯χ(gl)χ(f(n)+¯n)={1,if  1ind(f(n)+¯n)p12,0,otherwise.

    Therefore

    en=2p1χmodpp12l=1¯χ(gl)χ(f(n)+¯n)1=2p1χmodpχχ0p12l=1¯χ(gl)χ(f(n)+¯n). (2.1)

    For a,b,t with 1aa+(t1)bp1, by (2.1) we get

    t1j=0ea+jb=2p1χmodpχχ0p12l=1¯χ(gl)t1j=0χ(f(a+jb)+¯a+jb)+O(deg(f)),

    where the error term equals to the number of n such that (f(n)+¯n,p)>1. Write δ=ord χ. From Lemma 2.1 we have

    t1j=0χ(f(a+jb)+¯a+jb)=t1j=0χ((a+jb)δf(a+jb)+(a+jb)δ1)deg(f)p12logp, (2.2)

    since the polynomial (a+jb)δf(a+jb)+(a+jb)δ1 has a zero j=a¯b of order δ1. Hence from Lemma 2.2 we get

    t1j=0ea+jb1p1χmodpχχ0|p12l=1¯χ(gl)|deg(f)p12logpdeg(f)p12(logp)2.

    Therefore

    W(Ep1)=maxa,b,t|t1j=0ea+jb|deg(f)p12(logp)2.

    Now we consider the correlation measure of Ep1. We suppose that the congruence xf(x)+10 (mod p) has no solution. For 0d1<<dkp1M, from (2.1) we have

    Mn=1en+d1en+dk=2k(p1)kχ1modpχ1χ0p12l1=1¯χ1(gl1)χkmodpχkχ0p12lk=1¯χk(glk)×Mn=1χ1(f(n+d1)+¯n+d1)χk(f(n+dk)+¯n+dk)+O(kdeg(f)). (2.3)

    Let χ be a generator of the group modulo p characters, and let

    χu=(χ)δu,1δup2foru{1,2,,k}. (2.4)

    Then

    Mn=1χ1(f(n+d1)+¯n+d1)χk(f(n+dk)+¯n+dk)=Mn=1χ((f(n+d1)+¯n+d1)δ1(f(n+dk)+¯n+dk)δk)=Mn=1χ(((n+d1)f(n+d1)+1)δ1(n+d1)p1δ1((n+dk)f(n+dk)+1)δk(n+dk)p1δk).

    Since xf(x)+10 (mod p) has no solution, du is the (p1δu)-th zero of the polynomial

    ((n+d1)f(n+d1)+1)δ1(n+d1)p1δ1((n+dk)f(n+dk)+1)δk(n+dk)p1δk

    for u=1,2,,k. Thus this function is not the constant multiple of the (p1)-th power of a polynomial over Fp, from Lemma 2.1 we get

    Mn=1χ1(f(n+d1)+¯n+d1)χk(f(n+dk)+¯n+dk)kdeg(f)p12logp. (2.5)

    Combining (2.3), (2.5) and Lemma 2.2 we have

    Mn=1en+d1en+dk2k(p1)k(χmodpχχ0|p12l=1¯χ(gl)|)kkdeg(f)p12logp2kkdeg(f)p12(logp)k+1.

    Therefore

    Ck(Ep1)=maxM,D|Mn=1en+d1en+d2en+dk|2kkdeg(f)p12(logp)k+1.

    This proves Theorem 1.1.

    Now we prove Corollary 1.1. From f(x)=xg2(x) we get xf(x)=(xg(x))2. Since 1 is a quadratic non-residue modulo p for p3 (mod 4), the congruence xf(x)+10 (mod p) has no solution. So, from Theorem 1.1, we conclude that

    W(Ep1)deg(f)p12(logp)2,Ck(Ep1)2kkdeg(f)p12(logp)k+1.

    This completes the proof of Corollary 1.1.

    Now we prove Theorem 1.2. For 1np1 with (f(n)+g(n)(na1)(nas),p)=1, we have

    1p1χmodpp12l=1¯χ(gl)χ(f(n)+g(n)(na1)(nas))={1,if 1ind(f(n)+g(n)(na1)(nas))p12,0,otherwise.

    Therefore

    en=2p1χmodpp12l=1¯χ(gl)χ(f(n)+g(n)(na1)(nas))1=2p1χmodpχχ0p12l=1¯χ(gl)χ(f(n)+g(n)(na1)(nas))

    and then

    t1j=0ea+jb=2p1χmodpχχ0p12l=1¯χ(gl)t1j=0χ(f(a+jb)+g(a+jb)(a+jba1)(a+jbas))+O(deg(f)+deg(g)+s),

    where the error term equals to the number of n such that (f(n)+g(n)(na1)(nas),p)>1. Since gcd(g(n),(na1)(nas))=1 and δ=ord χ, we obtain the following estimate similar to (2.2).

    t1j=0χ(f(a+jb)+g(a+jb)(a+jba1)(a+jbas))=t1j=0χ(((a+jba1)(a+jbas))δf(a+jb)+((a+jba1)(a+jbas))δ1g(a+jb))(deg(f)+deg(g)+s)p12logp.

    Hence from Lemma 2.2 we get

    t1j=0ea+jb1p1χmodpχχ0|p12l=1¯χ(gl)|(deg(f)+deg(g)+s)p12logp(deg(f)+deg(g)+s)p12(logp)2.

    Therefore

    W(Ep)=maxa,b,t|t1j=0ea+jb|(deg(f)+deg(g)+s)p12(logp)2.

    According to (2.3) and (2.4) we get a similar equality for the correlation measure of Ep that

    Mn=1en+d1en+dk=2k(p1)kχ1modpχ1χ0p12l1=1¯χ1(gl1)χkmodpχkχ0p12lk=1¯χk(glk)×Mn=1χ1(f(n+d1)+g(n+d1)(n+d1+a1)(n+d1as))××χk(f(n+dk)+g(n+dk)(n+dk+a1)(n+dkas))+O(k(deg(f)+deg(g)+s))=2k(p1)kχ1modpχ1χ0p12l1=1¯χ1(gl1)χkmodpχkχ0p12lk=1¯χk(glk)×Mn=1χ(((n+d1a1)(n+d1as)f(n+d1)+g(n+d1))δ1×((n+d1a1)(n+d1as))p1δ1)××χ(((n+dka1)(n+dkas)f(n+dk)+g(n+dk))δk×((n+dka1)(n+dkas))p1δk)+O(k(deg(f)+deg(g)+s)).

    We assume that (xa1)(xas)f(x)+g(x)0 (mod p) has no solution, thus from this and Lemma 2.3 we obtain that the function

    ((n+d1a1)(n+d1as)f(n+d1)+g(n+d1))δ1((n+d1a1)(n+d1as))p1δ1××((n+dka1)(n+dkas)f(n+dk)+g(n+dk))δk×((n+dka1)(n+dkas))p1δk=((n+d1a1)(n+d1as)f(n+d1)+g(n+d1))δ1××((n+dka1)(n+dkas)f(n+dk)+g(n+dk))δk×H(n)

    has a (p1δu)-th root in Fp. Then this function is not the constant multiple of the (p1)-th power of a polynomial over Fp, so from Lemmas 2.1 and 2.2 we have

    Mn=1en+d1en+dk2k(p1)k(χmodpχχ0|p12l=1¯χ(gl)|)kk(deg(f)+deg(g)+s)p12logp2kk(deg(f)+deg(g)+s)p12(logp)k+1.

    Therefore,

    Ck(Ep)=maxM,D|Mn=1en+d1en+d2en+dk|2kk(deg(f)+deg(g)+s)p12(logp)k+1.

    This proves Theorem 1.2.

    We need the following estimates for mixed exponential sums to prove Theorem 1.2.

    Lemma 3.1. Let p be a prime number. Let ψ be a nontrivial additive character and χ a multiplicative character of Fp of order d. Furthermore, let F=fg,Q=qr be non-zero rational functions over Fp and let s be the number of distinct zeros of g in ¯Fp. Assume that S is the set of poles of F and Q. If one of the following conditions holds:

    (i) g(x)f(x),

    (ii) Q(x) is not of the form bB(x)d for any bFp and B(x)Fp(x).

    If 1N<p, then we have

    |0n<NnSψ(F(n))χ(Q(n))|3(max{deg(f),deg(g)}+s+deg(q)+deg(r))p1/2logp. (3.1)

    Proof. See Theorem 5 in [18].

    Lemma 3.2. Assume that p>2 is a prime, δ1,,δk are integers, and χ is a generator of the group of characters modulo p. Let u1,,uk be integers with (u1uk,p)=1, and let

    d1=(d11,,d1n),,dk=(dk1,,dkn)

    be distinct vectors whose coordinates are integers. Suppose that f(x)Fp[x]. Let 1N<p. For any integers 1t1,,tn<N and 1b1,,bn<p, define

    Ψ=t1j1=0((j1b1+d11)(j1b1+dk1), p)=1tnjn=0((jnbn+d1n)(jnbn+dkn), p)=1×χ(f(j1b1+d11)δ1f(jnbn+d1n)δ1f(j1b1+dk1)δkf(jnbn+dkn)δk)×e(u1¯j1b1+d11¯jnbn+d1n++uk¯j1b1+dk1¯jnbn+dknp).

    Then we have

    Ψkdeg(f)pn12logp.

    Proof. This lemma can be proved by using the methods in [15] with slight modifications. For a completeness we give detailed proof. Without loss of generality, we may assume that d11,,dk1 are not the same, since d1,,dk are distinct. If there are l distinct elements in {d11,,dk1}, we find that

    {d11,,dk1}={di11,,dil1},

    where di11,,dil1 are distinct. Then

    u1¯x1+d11¯xn+d1n++uk¯x1+dk1¯xn+dkn=(kj=1dj1=di11uj¯x2+dj2¯xn+djn)¯x1+di11++(kj=1dj1=dil1uj¯x2+dj2¯xn+djn)¯x1+dil1.

    Let

    ai1=kj=1dj1=di11uj¯x2+dj2¯xn+djn,,ail=kj=1dj1=dil1uj¯x2+dj2¯xn+djn,

    and define

    Δ={(x2,,xn)B:((x2+d12)(x2+dk2),p)=1,,((xn+d1n)(xn+dkn),p)=1,pkj=1dj1=di11uj¯x2+dj2¯xn+djn,,pkj=1dj1=dil1uj¯x2+dj2¯xn+djn},

    where

    B={(x2,,xn) | xi=jibi, 0jiti, i=2,,n.}.

    It is not hard to see that

    |Δ|pn1+O(kpn2),

    where the error term equals to the number of vectors (x2,,xn) such that

    ((x2+d12)(x2+dk2),p)>1.

    Then we have

    Ψ=p1x2=0p1xn=0(x2,,xn)Δχ(f(x2+d12)δ1f(x2+dk2)δk)χ(f(xn+d1n)δ1f(xn+dkn)δk)×t1j1=0((j1b1+d11)(j1b1+dk1),p)=1χ(f(j1b1+d11)δ1f(j1b1+dk1)δk)×e(ai1¯j1b1+di11++ail¯j1b1+dil1p)+O(kpn1).

    Define

    z(x1)=(x1+di11)(x1+dil1),

    and

    g(x1)=lj=1aijlm=1mj(x1+dim1).

    We get

    t1j1=0((j1b1+d11)(j1b1+dk1),p)=1χ(f(j1b1+d11)δ1f(j1b1+dk1)δk)×e(ai1¯j1b1+di11++ail¯j1b1+dil1p)=t1j1=0((j1b1+d11)(j1b1+dk1),p)=1χ(f(j1b1+d11)δ1f(j1b1+dk1)δk)e(g(j1b1)z(j1b1)p).

    Since di11,,dil1 are not zeros of g(x), we have z(x)g(x). There exist at most kdeg(f) different roots for the function f(j1b1+d11)δ1f(j1b1+dk1)δk. Thus we can use Lemma 3.1 to get

    t1j1=0((j1b1+d11)(j1b1+dk1),p)=1χ(f(j1b1+d11)δ1f(j1b1+dk1)δk)×e(ai1¯j1b1+di11++ail¯j1b1+dil1p)kdeg(f)p12logp,

    Therefore,

    Ψkdeg(f)pn12logp.

    This completes the proof of Lemma 3.2.

    Now we prove Theorem 1.3. For x1,,xn with (f(x1)f(xn),p)=1 we have

    2pp12v=0p1u=0e(u(ind (f(x1)f(xn))+¯x1xnv)p)1={1,if  0Rp(ind (f(x1)f(xn))+¯x1xn)p12,1,otherwise.

    Therefore

    η(x1,,xn)=2pp12v=0p1u=0e(u( ind (f(x1)f(xn))+¯x1xnv)p)1=2pp1u=1(p12v=0e(uvp))e(u ind (f(x1)f(xn))p)e(u¯x1xnp)+1p=2p(p1)p1u=1(p12v=0e(uvp))χ modpp2l=0¯χ(gl)e(ulp)χ(f(x1)f(xn))e(u¯x1xnp)+1p. (3.2)

    Let b1,,bn be positive integers, and write di=(di1,,din) for i{1,,k}. By (3.2) we get

    t1j1=0tnjn=0η(j1b1u1++jnbnun+d1)η(j1b1u1++jnbnun+dk)=t1j1=0tnjn=0η(j1b1+d11,,jnbn+d1n)η(j1b1+dk1,,jnbn+dkn)=2kpk(p1)kp1u1=1(p12v1=0e(u1v1p))p1uk=1(p12vk=0e(ukvkp))×χ1modpp2l1=0¯χ1(gl1)e(u1l1p)χkmodpp2lk=0¯χk(glk)e(uklkp)×t1j1=0((j1b1+d11)(j1b1+dk1), p)=1tnjn=0((jnbn+d1n)(jnbn+dkn), p)=1×χ1(f(j1b1+d11)f(jnbn+d1n))χk(f(j1b1+dk1)f(jnbn+dkn))×e(u1¯j1b1+d11¯jnbn+d1n++uk¯j1b1+dk1¯jnbn+dknp)+O(kdeg(f)pn1). (3.3)

    Let χ be a generator of the group of characters modulo p, and let χu=(χ)δu, where 1δup1 for u{1,2,,k}. From Lemma 3.2 we have

    t1j1=0((j1b1+d11)(j1b1+dk1), p)=1tnjn=0((jnbn+d1n)(jnbn+dkn), p)=1×χ1(f(j1b1+d11)f(jnbn+d1n))χk(f(j1b1+dk1)f(jnbn+dkn))×e(u1¯j1b1+d11¯jnbn+d1n++uk¯j1b1+dk1¯jnbn+dknp)=t1j1=0((j1b1+d11)(j1b1+dk1), p)=1tnjn=0((jnbn+d1n)(jnbn+dkn), p)=1×χ(f(j1b1+d11)δ1f(jnbn+d1n)δ1f(j1b1+dk1)δkf(jnbn+dkn)δk)×e(u1¯j1b1+d11¯jnbn+d1n++uk¯j1b1+dk1¯jnbn+dknp)kdeg(f)pn12logp. (3.4)

    Then combining (3.3) and (3.4) we get

    t1j1=0tnjn=0η(j1b1u1++jnbnun+d1)η(j1b1u1++jnbnun+dk)2kpk(p1)kp1u1=1|p12v1=0e(u1v1p)|p1uk=1|p12vk=0e(ukvkp)|×χ1modp|p2l1=0¯χ1(gl1)e(u1l1p)|χkmodp|p2lk=0¯χk(glk)e(uklkp)|×kdeg(f)pn12logp1pk(p1)kp1u1=11u1pχ1modp|p2l1=0¯χ1(gl1)e(u1l1p)|××p1uk=11ukpχkmodp|p2lk=0¯χk(glk)e(uklkp)|×2kkdeg(f)pn12logp, (3.5)

    where θ=min(θθ, 1(θθ)) denotes the distance from θ to nearest integer. Noting that

    χmodp|p2l=0¯χ(gl)e(ulp)|=p2m=0|p2l=0e(mind   glp1)e(ulp)|=p2m=0|p2l=0e(mlp1+ulp)|p2m=01mp1+up(p1)log(p1). (3.6)

    Combining (3.5) and (3.6) we obtain

    t1j1=0tnjn=0η(j1b1u1++jnbnun+d1)η(j1b1u1++jnbnun+dk)2kkdeg(f)pn12(logp)2k+1.

    Therefore,

    Qk(η)2kkdeg(f)pn12(logp)2k+1.

    This completes the proof of Theorem 1.3.

    In this paper, a method is given for the application of primitive characters modulo p and the estimates of both character sums and mixed exponential sums to the estimates of pseudorandom measures. The binary sequences in Theorem 1.1, Corollary 1.1 and Theorem 1.2 are demonstrated to be pseudorandom, since the upper bounds of both the well-distribution measure and the correlation measure of those sequences are o(p) as p. With the growth of the number of dimensions, the error term of the pseudorandom measure in (3.3) is up to kdeg(f)pn1, thus the result in Theorem 1.3 is the best one by now which is based on Lemma 3.2.

    The authors express their gratitude to the referee for his/her helpful and detailed comments. This work is supported by National Natural Science Foundation of China under Grant No. 12071368, and the Science and Technology Program of Shaanxi Province of China under Grant No. 2019JM-573 and 2020JM-026.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] C. Mauduit, A. Sárközy, On finite pseudorandom binary sequencs I: Measure of pseudorandomness, the Legendre symbol, Acta Arith., 82 (1997), 365–377. https://doi.org/10.4064/aa-82-4-365-377 doi: 10.4064/aa-82-4-365-377
    [2] H. Liu, A family of elliptic curve pseudorandom binary sequences, Des. Codes Cryptogr., 73 (2014), 251–265. https://doi.org/10.1007/s10623-013-9822-7 doi: 10.1007/s10623-013-9822-7
    [3] C. Mauduit, J. Rivat, A. Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatsh. Math., 141 (2004), 197–208. https://doi.org/10.1007/s00605-003-0112-8 doi: 10.1007/s00605-003-0112-8
    [4] C. Mauduit, A. Sárközy, Construction of pseudorandom binary sequences by using the multiplicative inverse, Acta Math. Hung., 108 (2005), 239–252. https://doi.org/10.1007/s10474-005-0222-y doi: 10.1007/s10474-005-0222-y
    [5] L. Mérai, Remarks on pseudorandom binary sequences over elliptic curves, Fund. Inform., 114 (2012), 301–308. https://doi.org/10.3233/FI-2012-630 doi: 10.3233/FI-2012-630
    [6] J. Rivat, A. Sárközy, Modular constructions of pseudorandom binary sequences with composite moduli, Period. Math. Hung., 51 (2006), 75–107. https://doi.org/10.1007/s10998-005-0031-7 doi: 10.1007/s10998-005-0031-7
    [7] K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hung., 49 (2005), 45–63. https://doi.org/10.1007/s10998-004-0522-y doi: 10.1007/s10998-004-0522-y
    [8] L. Mérai, A construction of pseudorandom binary sequences using rational functions, Unif. Distrib. Theory, 4 (2009), 35–49.
    [9] P. Hubert, C. Mauduit, A. Sárközy, On pseudorandom binary lattices, Acta Arith., 125 (2006), 51–62. https://doi.org/10.4064/aa125-1-5 doi: 10.4064/aa125-1-5
    [10] K. Gyarmati, C. Mauduit, A. Sárközy, Pseudorandom binary sequences and lattices, Acta Arith., 135 (2008), 181–197. https://doi.org/10.4064/aa135-2-6 doi: 10.4064/aa135-2-6
    [11] K. Gyarmati, C. Mauduit, A. Sárközy, Constructions of pseudorandom binary lattices, Unif. Distrib. Theory, 4 (2009), 59–80.
    [12] K. Gyarmati, On new measures of pseudorandomness of binary lattices, Acta Math. Hung., 131 (2011), 346–359. https://doi.org/10.1007/s10474-010-0041-7 doi: 10.1007/s10474-010-0041-7
    [13] K. Gyarmati, C. Mauduit, A. Sárközy, Measures of pseudorandomness of finite binary lattices, II. (The symmetry measures), Ramanujan J., 25 (2011), 155–178. https://doi.org/10.1007/s11139-010-9255-0 doi: 10.1007/s11139-010-9255-0
    [14] K. Gyarmati, C. Mauduit, A. Sárközy, On finite pseudorandom binary lattices, Discrete Appl. Math., 216 (2017), 589–597. https://doi.org/10.1016/j.dam.2015.07.012 doi: 10.1016/j.dam.2015.07.012
    [15] H. Liu, Large families of pseudorandom binary lattices by using the multiplicative inverse modulo p, Int. J. Number Theory, 15 (2019), 527–546. https://doi.org/10.1142/S1793042119500271 doi: 10.1142/S1793042119500271
    [16] C. Mauduit, A. Sárközy, Construction of pseudorandom binary lattices by using the multiplicative inverse, Monatsh. Math., 153 (2008), 217–231. https://doi.org/10.1007/s00605-007-0479-z doi: 10.1007/s00605-007-0479-z
    [17] L. Goubin, C. Mauduit, A. Sárközy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69. https://doi.org/10.1016/j.jnt.2003.12.002 doi: 10.1016/j.jnt.2003.12.002
    [18] L. Mérai, A construction of pseudorandom binary sequences using both additive and multiplicative characters, Acta Arith., 139 (2009), 241–252.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1891) PDF downloads(74) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog