Considering a mixture model with qualitative factors, the $ R $-optimal design problem is investigated when the levels of the qualitative factor interact with the mixture factors. In this paper, the conditions for $ R $-optimality of designs with mixture and qualitative factors are presented. General analytical expressions are also derived for the decision function under the $ R $-optimal designs, in order to verify that the resulting designs satisfy the general equivalence theorem. In addition, the relative efficiency of the $ R $-optimal design is discussed.
Citation: Ling Ling, Guanghui Li, Xiaoyuan Zhu, Chongqi Zhang. R-optimal designs for second-order Scheffé model with qualitative factors[J]. AIMS Mathematics, 2022, 7(3): 4540-4551. doi: 10.3934/math.2022253
Considering a mixture model with qualitative factors, the $ R $-optimal design problem is investigated when the levels of the qualitative factor interact with the mixture factors. In this paper, the conditions for $ R $-optimality of designs with mixture and qualitative factors are presented. General analytical expressions are also derived for the decision function under the $ R $-optimal designs, in order to verify that the resulting designs satisfy the general equivalence theorem. In addition, the relative efficiency of the $ R $-optimal design is discussed.
[1] | J. A. Cornell, Experiments with mixtures: designs, models, and the analysis of mixture data, New York: John Wiley & Sons, 2002. |
[2] | T. Zijlstra, P. Goos, A. Verhetsel, A mixture-amount stated preference study on the mobility budget, Transport. Res. A-Pol., 126 (2019), 230–246. https://doi.org/10.1016/j.tra.2019.06.009 doi: 10.1016/j.tra.2019.06.009 |
[3] | P. Goos, H. Hamidouche, Choice models with mixtures: An application to a cocktail experiment, Food Qual. Prefer., 77 (2019), 135–146. https://doi.org/10.1016/j.foodqual.2019.04.006 doi: 10.1016/j.foodqual.2019.04.006 |
[4] | P. Goos, B. Jones, U. Syafitri, Ⅰ-optimal design of mixture experiments, J. Am. Stat. Assoc., 111 (2016), 899–911. https://doi.org/10.1080/01621459.2015.1136632 doi: 10.1080/01621459.2015.1136632 |
[5] | X. F. Zhang, Z. B. Zhu, C. Q. Zhang, Multi-stage differential evolution algorithm for constrained D-optimal design, AIMS Mathematics, 6 (2021), 2956–2969. https://doi.org/10.3934/math.2021179 doi: 10.3934/math.2021179 |
[6] | H. Dette, Designing experiments with respect to standardized optimality criteria, J. R. Stat. Soc. B, 59 (1997), 97–110. https://doi.org/10.1111/1467-9868.00056 doi: 10.1111/1467-9868.00056 |
[7] | H. H. Hao, X. Y. Zhu, X. F. Zhang, C. Q. Zhang, R-optimal design of the second-order scheffé mixture model, Stat. Probabil. Lett., 173 (2021), 109069. https://doi.org/10.1016/j.spl.2021.109069 doi: 10.1016/j.spl.2021.109069 |
[8] | C. P. Lee, M. N. L. Huang, D-optimal designs for second-order response surface models with qualitative factors, J. Data Sci., 9 (2011), 139–153. https://doi.org/10.6339/JDS.201104_09(2).0001 doi: 10.6339/JDS.201104_09(2).0001 |
[9] | R. X. Yue, X. Liu, K. Chatterjee, D-optimal designs for multiresponse linear models with a qualitative factor, J. Multivariate Anal., 124 (2014), 57–69. https://doi.org/10.1016/j.jmva.2013.10.011 doi: 10.1016/j.jmva.2013.10.011 |
[10] | M. H. Kao, K. Hazar, Optimal designs for mixed continuous and binary responses with quantitative and qualitative factors, J. Multivariate Anal., 182 (2021), 104712. https://doi.org/10.1016/j.jmva.2020.104712 doi: 10.1016/j.jmva.2020.104712 |
[11] | M. Zhang, F. Yang, Y. D. Zhou, Uniformity criterion for designs with both qualitative and quantitative factors, Statistics, 55 (2021), 90–109. https://doi.org/10.1080/02331888.2021.1873993 doi: 10.1080/02331888.2021.1873993 |
[12] | A. N. Donev, Design of experiments with both mixture and qualitative factors, J. R. Stat. Soc. B, 51 (1989), 297–302. https://doi.org/10.1111/j.2517-6161.1989.tb01767.x doi: 10.1111/j.2517-6161.1989.tb01767.x |
[13] | Z. B. Zhu, G. H. Li, C. Q. Zhang, A-optimal designs for mixture central polynomial model with qualitative factors, Commun. Stat. Theor. M., 48 (2019), 2345–2355. https://doi.org/10.1080/03610926.2018.1472783 doi: 10.1080/03610926.2018.1472783 |