With the help of a summation of basic hypergeometric series, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials, we prove some new q-supercongruences on sums of q-shifted factorials. Especially, we give a q-analogue of a formula due to Liu [
Citation: Chuanan Wei, Chun Li. New q-supercongruences arising from a summation of basic hypergeometric series[J]. AIMS Mathematics, 2022, 7(3): 4125-4136. doi: 10.3934/math.2022228
[1] | Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable q-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506 |
[2] | Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177 |
[3] | Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303 |
[4] | Zeinab S. I. Mansour, Maryam Al-Towailb . A q-Type k-Lidstone series for entire functions. AIMS Mathematics, 2023, 8(6): 13525-13542. doi: 10.3934/math.2023686 |
[5] | Alina Alb Lupaş, Georgia Irina Oros . Differential sandwich theorems involving Riemann-Liouville fractional integral of q-hypergeometric function. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246 |
[6] | Marta Na Chen, Wenchang Chu . Yabu's formulae for hypergeometric 3F2-series through Whipple's quadratic transformations. AIMS Mathematics, 2024, 9(8): 21799-21815. doi: 10.3934/math.20241060 |
[7] | Waleed Mohamed Abd-Elhameed, Anna Napoli . New formulas of convolved Pell polynomials. AIMS Mathematics, 2024, 9(1): 565-593. doi: 10.3934/math.2024030 |
[8] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New results of unified Chebyshev polynomials. AIMS Mathematics, 2024, 9(8): 20058-20088. doi: 10.3934/math.2024978 |
[9] | Maryam AL-Towailb . A generalization of the q-Lidstone series. AIMS Mathematics, 2022, 7(5): 9339-9352. doi: 10.3934/math.2022518 |
[10] | A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086 |
With the help of a summation of basic hypergeometric series, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials, we prove some new q-supercongruences on sums of q-shifted factorials. Especially, we give a q-analogue of a formula due to Liu [
For any complex variable x, define the shifted-factorial to be
(x)0=1and(x)n=x(x+1)⋯(x+n−1)whenn∈Z+. |
Let p be an odd prime and Zp denote the ring of all p-adic integers. Define Morita's p-adic Gamma function (cf. [17,Chapter 7]) by
Γp(0)=1andΓp(n)=(−1)n∏1⩽k<np∤kk,whenn∈Z+. |
Noting N is a dense subset of Zp related to the p-adic norm |⋅|p, for each x∈Zp, the definition of p-adic Gamma function can be extended as
Γp(x)=limn∈N|x−n|p→0Γp(n). |
Two properties of the p-adic Gamma function in common use can be stated as follows:
Γp(x+1)Γp(x)={−x,if p∤x,−1,if p|x, |
Γp(x)Γp(1−x)=(−1)⟨−x⟩p−1, |
where ⟨x⟩p indicates the least nonnegative residue of x modulo p, i.e., ⟨x⟩p≡x(modp) and ⟨x⟩p∈{0,1,…,p−1}. In 2016, Long and Ramakrishna [16,Proposition 25] showed that, for any prime p>3,
p−1∑k=0(1/3)3kk!3≡{Γp(1/3)6(modp3),if p≡1(mod6),−p23Γp(1/3)6(modp3),if p≡5(mod6). | (1.1) |
Similarly, Liu [14,Theorem 1.1] proved that, for any prime p>3,
p−1∑k=0(−1/3)3kk!3≡{−18p2Γp(2/3)6(modp3),if p≡1(mod6),54Γp(2/3)6(modp3),if p≡5(mod6). | (1.2) |
For all complex numbers x and q, define the q-shifted factorial to be
(x;q)0=1and(x;q)n=(1−x)(1−xq)⋯(1−xqn−1)whenn∈Z+. |
For simplicity, we also adopt the compact notation:
(x1,x2,…,xr;q)n=(x1;q)n(x2;q)n⋯(xr;q)n, |
where r∈Z+ and n∈N. Following Gasper and Rahman [1], define the basic hypergeometric series r+1ϕr to be
r+1ϕr[a1,a2,…,ar+1b1,b2,…,br;q,z]=∞∑k=0(a1,a2,…,ar+1;q)k(q,b1,b2,…,br;q)kzk. |
Then the q-Saalschütz identity (cf. [1,Appendix (Ⅱ.12)]) can be expressed as
3ϕ2[a,b,q−nc,abq1−n/c;q,q]=(c/a,c/b;q)n(c,c/ab;q)n. | (1.3) |
Recently, Guo [2] established three q-supercongruences via the creative microscoping method (introduced by Guo and Zudilin [9]), and the Chinese remainder theorem for polynomials. Similarly, Wei, Liu, and Wang[21,Theorems 1.1 and 1.2] provided a q-analogue of (1.1). For more q-analogues of supercongruences, we refer the reader to [3,4,5,6,7,8,10,11,12,13,15,18,20,22].
Let [n]=(1−qn)/(1−q) be the q-integer and Φn(q) the n-th cyclotomic polynomial in q:
Φn(q)=∏1⩽k⩽ngcd(k,n)=1(q−ζk), |
where ζ is an n-th primitive root of unity. Motivated by the work just mentioned, we shall establish the following two theorems.
Theorem 1.1. Let n>1 be an integer with n≡1(mod3). Then, modulo Φn(q)3,
(2n+1)/3∑k=0(q−1;q3)3k(q3;q3)3kq9k≡q(2−2n)/3(1+q)(q;q3)2(2n+1)/3(q3;q3)2(2n+1)/3×{3−[2n]2((2n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q)}. |
Theorem 1.2. Let n be a positive integer with n≡2(mod3). Then, modulo Φn(q)3,
(n+1)/3∑k=0(q−1;q3)3k(q3;q3)3kq9k≡q(2−n)/3(1+q)(q;q3)2(n+1)/3(q3;q3)2(n+1)/3×{θn(q)+[n]2((n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q)}, |
where
θn(q)=(1−q−3q2)(1−2qn)+(4−4q−6q2+3q3)q2n(1+q)(q−qn)2. |
It is not difficult to understand that Theorems 1.1 and 1.2 give a q-analogue of (1.2). Letting n=p be an prime and taking q→1 in the above two theorems, we obtain the following conclusions.
Corollary 1.3. Let p be a prime such that p≡1(mod6). Then
(2p+1)/3∑k=0(−1/3)3kk!3≡6(1/3)2(2p+1)/3(1)2(2p+1)/3{1+6p2−(2p+1)/3∑i=14p2(3i−2)2}(modp3). |
Corollary 1.4. Let p be a prime such that p≡5(mod6). Then
(p+1)/3∑k=0(−1/3)3kk!3≡54(1/3)2(p+1)/3(1)2(p−2)/3{1+p2(p+1)2(p+1)/3∑i=11(3i−2)2}(modp3). |
In order to explain the equivalence of (1.2) and Corollaries 1.3 and 1.4, we need to verify the following relations.
Proposition 1.5. Let p be a prime such that p≡1(mod6). Then
(1/3)2(2p+1)/3(1)2(2p+1)/3{1+6p2−(2p+1)/3∑i=14p2(3i−2)2}≡−3p2Γp(2/3)6(modp3). |
Proposition 1.6. Let p be a prime such that p≡5(mod6). Then
(1/3)2(p+1)/3(1)2(p−2)/3{1+p2(p+1)2(p+1)/3∑i=11(3i−2)2}≡Γp(2/3)6(modp3). |
The rest of the paper is arranged as follows. The proof of Theorems 1.1 and 1.2 will be given in Section 2. To this end, we first derive a q-supercongruence modulo (1−aqtn)(a−qtn)(b−qtn), where t∈{1,2}, by using a summation of basic hypergeometric series, the creative microscoping method, and the Chinese remainder theorem for coprime polynomials. Finally, the proof of Propositions 1.5 and 1.6 will be displayed in Section 3.
In order to prove Theorems 1.1 and 1.2, we require the following lemma.
Lemma 2.1.
3ϕ2[a,b,q−mq,abq2−m;q,q3]=(1/a,1/b;q)m(q,1/ab;q)m×{qm(1−qm)(q−abq2−(1+q−aq−bq)qm)(1−abq)(aq−qm)(bq−qm)−1−ab−(2−a−b)qm(1−a)(1−b)}. |
Proof. By comparing the k-th summands in the summations, it is easy to see that
4ϕ3[a,b,xq,q−mcq,x,abq1−m/c;q,q]=(1−c)(ab−cxqm)(1−x)(ab−c2qm)3ϕ2[a,b,q−mc,abq1−m/c;q,q]+(c−x)(ab−cqm)(1−x)(ab−c2qm)3ϕ2[a,b,q−mcq,abq−m/c;q,q]. |
Evaluating the two series on the right-hand side by (1.3), we get
4ϕ3[a,b,xq,q−mcq,x,abq1−m/c;q,q]=Ωm(q;a,b,c,x), | (2.1) |
where
Ωm(q;a,b,c,x)=(c/a,c/b;q)m(qc,c/ab;q)m×{(1−cqm)(ab−cxqm)(1−x)(ab−c2qm)+(c−x)(ab−c)(a−cqm)(b−cqm)(1−x)(a−c)(b−c)(ab−c2qm)}. |
Similarly, it is also routine to confirm the relation
5ϕ4[a,b,xq,yq,q−mcq2,x,y,abq1−m/c;q,q]=(1−cq)(ab−cyqm)(1−y)(ab−c2qm+1)4ϕ3[a,b,xq,q−mcq,x,abq1−m/c;q,q]+(cq−y)(ab−cqm)(1−y)(ab−c2qm+1)4ϕ3[a,b,xq,q−mcq2,x,abq−m/c;q,q]. |
Calculating the two series on the right-hand side via (2.1), we arrive at
5ϕ4[a,b,xq,yq,q−mcq2,x,y,abq1−m/c;q,q]=(1−cq)(ab−cyqm)(1−y)(ab−c2qm+1)Ωm(q;a,b,c,x)+(cq−y)(ab−cqm)(1−y)(ab−c2qm+1)Ωm(q;a,b,cq,x). |
Letting c→q−1,x→∞,y→∞ in the last equation, we are led to Lemma 2.1.
Subsequently, we shall deduce the following united parametric extension of Theorems 1.1 and 1.2.
Theorem 2.2. Let n be a positive integer with n≡3−t(mod3) and t∈{1,2}. Then, modulo (1−aqtn)(a−qtn)(b−qtn),
(tn+1)/3∑k=0(aq−1,q−1/a,q−1/b;q3)k(q3;q3)2k(q3/b;q3)kq9k≡(b−qtn)(ab−1−a2+aqtn)(a−b)(1−ab)(bq,q;q3)(tn+1)/3(bq)(tn+1)/3(1/b,q3;q3)(tn+1)/3An(q;b,t)+(1−aqtn)(a−qtn)(a−b)(1−ab)(aq,q/a;q3)(tn+1)/3b(tn+1)/3(1/b,1/bq;q3)(tn+1)/3B(q;a,b), | (2.2) |
where
An(q;b,t)=b(1−qtn+1){qtn+2/b−q+qtn−1(1+q3−qtn+2−q2/b)}(1−q)(1−bqtn−1)(1−qtn+1/b)−1−qtn−2/b−qtn+1(2−qtn−1−q−1/b)(1−qtn−1)(1−q−1/b),B(q;a,b)=(1−bq){1−q−b(q−2+q−a−1/a)}q(1−q)(1−ab/q)(1−b/aq)−1−q−2−b(2q−a−1/a)bq(1−aq−1)(1−q−1/a). |
Proof. When a=q−tn or a=qtn, the left-hand side of (2.2) is equal to
(tn+1)/3∑k=0(q−1−tn,q−1+tn,q−1/b;q3)k(q3;q3)2k(q3/b;q3)kq9k=3ϕ2[q−1−tn,q−1+tn,q−1/bq3,q3/b;q3,q9]. | (2.3) |
According to Lemma 2.1, the right-hand side of (2.3) can be written as
(bq,q;q3)(tn+1)/3(bq)(tn+1)/3(1/b,q3;q3)(tn+1)/3An(q;b,t). |
Since (1−aqtn) and (a−qtn) are relatively prime polynomials, we have the following result: modulo (1−aqtn)(a−qtn),
(tn+1)/3∑k=0(aq−1,q−1/a,q−1/b;q3)k(q3;q3)2k(q3/b;q3)kq9k≡(bq,q;q3)(tn+1)/3(bq)(tn+1)/3(1/b,q3;q3)(tn+1)/3An(q;b,t). | (2.4) |
When b=qtn, the left-hand side of (2.2) is equal to
(tn+1)/3∑k=0(aq−1,q−1/a,q−1−tn;q3)k(q3;q3)2k(q3−tn;q3)kq9k=3ϕ2[aq−1,q−1/a,q−1−tnq3,q3−tn;q3,q9]. | (2.5) |
By Lemma 2.1, the right-hand side of (2.5) can be expressed as
(aq,q/a;q3)(tn+1)/3(q2,q3;q3)(tn+1)/3×{qtn(1−qtn+1){1−q−qtn(q−2+q−a−1/a)}(1−q)(1−aqtn−1)(1−qtn−1/a)−1−q−2−qtn(2q−a−1/a)(1−aq−1)(1−q−1/a)}. |
Then we obtain the conclusion: modulo (b−qtn),
(tn+1)/3∑k=0(aq−1,q−1/a,q−1/b;q3)k(q3;q3)2k(q3/b;q3)kq9k≡(aq,q/a;q3)(tn+1)/3b(tn+1)/3(1/b,1/bq;q3)(tn+1)/3B(q;a,b). | (2.6) |
It is clear that the polynomials (1−aqtn)(a−qtn) and (b−qtn) are relatively prime. Noting the q-congruences
(b−qtn)(ab−1−a2+aqtn)(a−b)(1−ab)≡1(mod(1−aqtn)(a−qtn)),(1−aqtn)(a−qtn)(a−b)(1−ab)≡1(mod(b−qtn)) |
and employing the Chinese remainder theorem for coprime polynomials, we get Theorem 2.2 from (2.4) and (2.6).
Proof of Theorem 1.1. Letting b→1,t=2 in Theorem 2.2, we arrive at the formula: modulo Φn(q)(1−aq2n)(a−q2n),
(2n+1)/3∑k=0(aq−1,q−1/a,q−1;q3)k(q3;q3)3kq9k≡(1−a)2+(1−aq2n)(a−q2n)(1−a)2(q;q3)2(2n+1)/3q(2n+1)/3(q3;q3)2(2n+1)/3Cn(q)+(1−aq2n)(a−q2n)(1−a)2(aq,q/a;q3)(2n+1)/3(q2,q3;q3)(2n−2)/3D(q;a)≡(q;q3)2(2n+1)/3q(2n+1)/3(q3;q3)2(2n+1)/3Cn(q)+(1−aq2n)(a−q2n)q(2n+1)/3(1−a)2×{−(q;q3)2(2n+1)/3(q3;q3)2(2n+1)/3(3q+3q2)+(aq,q/a;q3)(2n+1)/3(q3;q3)2(2n+1)/3(1−q)2D(q;a)}, | (2.7) |
where
Cn(q)=q3+q2n(1+q4n)(1−3q+q3−3q4)q(1−q)2(1−q2n−1)2+q4n(1−3q+6q2+2q3−3q4+3q5)+q8n+3q(1−q)2(1−q2n−1)2,D(q;a)=(1+a+a2)(a−3aq+q3+a2q3−3aq4)+3a2q2(2+q3)q(1−q)2(1−aq)2(1−a/q)2. |
By the L'Hôspital rule, we have
lima→1(1−aq2n)(a−q2n)(1−a)2{−(q;q3)2(2n+1)/3(3q+3q2)+(aq,q/a;q3)(2n+1)/3(1−q)2D(q;a)}=−q(1+q)[2n]2(q;q3)2(2n+1)/3{(2n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q}. |
Letting a→1 in (2.7) and utilizing the above limit, we are led to the q-supercongruence: modulo Φn(q)3,
(2n+1)/3∑k=0(q−1;q3)3k(q3;q3)3kq9k≡(q;q3)2(2n+1)/3q(2n+1)/3(q3;q3)2(2n+1)/3Cn(q)−q(1+q)[2n]2(q;q3)2(2n+1)/3q(2n+1)/3(q3;q3)2(2n+1)/3{(2n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q}≡q(2−2n)/3(1+q)(q;q3)2(2n+1)/3(q3;q3)2(2n+1)/3×{3−[2n]2((2n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q)}. |
This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. Letting b→1,t=1 in Theorem 2.2, we obtain the result: modulo Φn(q)(1−aqn)(a−qn),
(n+1)/3∑k=0(aq−1,q−1/a,q−1;q3)k(q3;q3)3kq9k≡(1−a)2+(1−aqn)(a−qn)(1−a)2(q;q3)2(n+1)/3q(n+1)/3(q3;q3)2(n+1)/3Cn/2(q)+(1−aqn)(a−qn)(1−a)2(aq,q/a;q3)(n+1)/3(q2,q3;q3)(n−2)/3D(q;a)≡(q;q3)2(n+1)/3q(n+1)/3(q3;q3)2(n+1)/3Cn/2(q)+(1−aqn)(a−qn)q(n+1)/3(1−a)2×{(q;q3)2(n+1)/3(q3;q3)2(n+1)/3(3q+3q2)−(aq,q/a;q3)(n+1)/3(q3;q3)2(n+1)/3(1−q)2D(q;a)}. | (2.8) |
By the L'Hôspital rule, we have
lima→1(1−aqn)(a−qn)(1−a)2{(q;q3)2(n+1)/3(3q+3q2)−(aq,q/a;q3)(n+1)/3(1−q)2D(q;a)}=q(1+q)[n]2(q;q3)2(n+1)/3{(n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q}. |
Letting a→1 in (2.8) and employing the upper limit, we get the q-supercongruence: modulo Φn(q)3,
(n+1)/3∑k=0(q−1;q3)3k(q3;q3)3kq9k≡(q;q3)2(n+1)/3q(n+1)/3(q3;q3)2(n+1)/3Cn/2(q)+q(1+q)[n]2(q;q3)2(n+1)/3q(n+1)/3(q3;q3)2(n+1)/3{(n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q}≡q(2−n)/3(1+q)(q;q3)2(n+1)/3(q3;q3)2(n+1)/3×{θn(q)+[n]2((n+1)/3∑i=13q3i−2[3i−2]2−1+5q+3q21+q)}. |
Thus we finish the proof of Theorem 1.2.
Let Γ′p(x) and Γ″p(x) be the first derivative and second derivative of Γp(x) respectively.
Proof of Proposition 1.5. By means of the properties of the p-adic Gamma function, we arrive at
(1/3)2(2p+1)/3(1)2(2p+1)/3=p2(2p+1)2{Γp((2+2p)/3)Γp(1)Γp(1/3)Γp((1+2p)/3)}2=p2(2p+1)2{Γp(2/3)Γp((2+2p)/3)Γp((2−2p)/3)}2. |
Moreover, it is not difficult to understand that
1+6p2−(2p+1)/3∑i=14p2(3i−2)2=−3+6p2−(p−1)/3∑i=14p2(3i−2)2−(2p+1)/3∑i=(p+5)/34p2(3i−2)2. |
Then we can proceed as follows:
(1/3)2(2p+1)/3(1)2(2p+1)/3{1+6p2−(2p+1)/3∑i=14p2(3i−2)2}=p2(2p+1)2{Γp(2/3)Γp((2+2p)/3)Γp((2−2p)/3)}2×{−3+6p2−(p−1)/3∑i=14p2(3i−2)2−(2p+1)/3∑i=(p+5)/34p2(3i−2)2}≡−3p2(2p+1)2Γp(2/3)6≡−3p2Γp(2/3)6(modp3). |
This verifies the correctness of Proposition 1.5.
Proof of Proposition 1.6. Through the properties of the p-adic Gamma function, we have
(1/3)2(p+1)/3(1)2(p−2)/3={Γp((2+p)/3)Γp(1)Γp(1/3)Γp((1+p)/3)}2={Γp(2/3)Γp((2+p)/3)Γp((2−p)/3)}2≡Γp(2/3)2{Γp(2/3)+Γ′p(2/3)p3+Γ″p(2/3)p218}2×{Γp(2/3)−Γ′p(2/3)p3+Γ″p(2/3)p218}2≡Γp(2/3)6{1−2p29G1(2/3)2+2p29G2(2/3)}(modp3), | (3.1) |
where G1(x)=Γ′p(x)/Γp(x) and G2(x)=Γ″p(x)/Γp(x).
Let
Hm=m∑k=11k,H(2)m=m∑k=11k2. |
In light of the three relations from Wang and Pan [19,Lemmas 2.3 and 2.4]:
G2(0)=G1(0)2,G1(2/3)≡G1(0)+H(2p−1)/3(modp),G2(2/3)≡G2(0)+2G1(0)H(2p−1)/3+H2(2p−1)/3−H(2)(2p−1)/3(modp), |
we get
G2(2/3)−G1(2/3)2≡−H(2)(2p−1)/3(modp). | (3.2) |
In view of (3.1) and (3.2), we are led to
(1/3)2(p+1)/3(1)2(p−2)/3{1+p2(p+1)2(p+1)/3∑i=11(3i−2)2} | (3.3) |
≡Γp(2/3)6{1−2p29H(2)(2p−1)/3}{1+p2(p+1)2(p+1)/3∑i=11(3i−2)2}≡Γp(2/3)6{1−2p29H(2)(2p−1)/3+p2(p+1)2(p+1)/3∑i=11(3i−2)2}(modp3). | (3.4) |
It is easy to see that
(p+1)/3∑i=11(3i−2)2=H(2)p−1−19H(2)(p−2)/3−(p−2)/3∑i=11(3i−1)2≡−19H(2)(p−2)/3−(p−2)/3∑i=11(3i−1)2=−19H(2)(p−2)/3−(p−2)/3∑i=11(p−3i)2≡−29H(2)(p−2)/3=−29p−1∑i=(2p+2)/31(p−i)2≡−29p−1∑i=(2p+2)/31i2≡29H(2)(2p−1)/3(modp). | (3.5) |
Substituting (3.5) into (3.4), we confirm the validity of Proposition 1.6.
The main results of this paper are two theorems. They give a q-analogue of (1.2). We hope that more conclusions can be derived form the creative microscoping method and the Chinese remainder theorem for coprime polynomials.
The work is supported by the Natural Science Foundation of Hainan Province (No. 2019RC184) and the National Natural Science Foundation of China (No. 12071103).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | G. Gasper, M. Rahman, Basic hypergeometric series, 2nd edition, Cambridge: Cambridge University Press, 2004. |
[2] |
V. J. W. Guo, q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 120 (2020), 102078. https://doi.org/10.1016/j.aam.2020.102078 doi: 10.1016/j.aam.2020.102078
![]() |
[3] |
V. J. W. Guo, Some variations of a "divergent" Ramanujan-type q-supercongruence, J. Differ. Equ. Appl., 27 (2021), 376–388. https://doi.org/10.1080/10236198.2021.1900140 doi: 10.1080/10236198.2021.1900140
![]() |
[4] |
V. J. W. Guo, A further q-analogue of Van Hamme's (H.2) supercongruence for primes p≡3(mod4), Int. J. Number Theory, 17 (2021), 1201–1206. https://doi.org/10.1142/S1793042121500329 doi: 10.1142/S1793042121500329
![]() |
[5] |
V. J. W. Guo, J. C. Liu, q-Analogues of two Ramanujan-type formulas for 1/π, J. Differ. Equ. Appl., 24 (2018), 1368–1373. https://doi.org/10.1080/10236198.2018.1485669 doi: 10.1080/10236198.2018.1485669
![]() |
[6] |
V. J. W. Guo, M. J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Isr. J. Math., 240 (2020), 821–835. https://doi.org/10.1007/s11856-020-2081-1 doi: 10.1007/s11856-020-2081-1
![]() |
[7] |
V. J. W. Guo, M. J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx., 53 (2021), 155–200. https://doi.org/10.1007/s00365-020-09524-z doi: 10.1007/s00365-020-09524-z
![]() |
[8] | V. J. W. Guo, M. J. Schlosser, A family of q-supercongruences modulo the cube of a cyclotomic polynomial, B. Aust. Math. Soc., 2021. https: //doi.org/10.1017/S0004972 721000630 |
[9] |
V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. https://doi.org/10.1016/j.aim.2019.02.008 doi: 10.1016/j.aim.2019.02.008
![]() |
[10] |
V. J. W. Guo, W. Zudilin, Dwork-type supercongruences through a creative q-microscope, J. Comb. Theory A, 178 (2021), 105362. https://doi.org/10.1016/j.jcta.2020.105362 doi: 10.1016/j.jcta.2020.105362
![]() |
[11] |
J. C. Liu, On a congruence involving q-Catalan numbers, C. R. Math. Acad. Sci. Paris, 358 (2020), 211–215. https://doi.org/10.5802/crmath.35 doi: 10.5802/crmath.35
![]() |
[12] |
J. C. Liu, Z. Y. Huang, A truncated identity of Euler and related q-congruences, B. Aust. Math. Soc., 102 (2020), 353–359. https://doi.org/10.1017/S0004972720000301 doi: 10.1017/S0004972720000301
![]() |
[13] |
J. C. Liu, F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math., 116 (2020), 102003. https://doi.org/10.1016/j.aam.2020.102003 doi: 10.1016/j.aam.2020.102003
![]() |
[14] |
J. C. Liu, Supercongruences arising from transformations of hypergeoetric series, J. Math. Anal. Appl., 497 (2021), 124915. https://doi.org/10.1016/j.jmaa.2020.124915 doi: 10.1016/j.jmaa.2020.124915
![]() |
[15] |
Y. D. Liu, X. X. Wang, q-Analogues of two Ramanujan-type supercongruences, J. Math. Anal. Appl., 502 (2021), 125238. https://doi.org/10.1016/j.jmaa.2021.125238 doi: 10.1016/j.jmaa.2021.125238
![]() |
[16] |
L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. https://doi.org/10.1016/j.aim.2015.11.043 doi: 10.1016/j.aim.2015.11.043
![]() |
[17] | A. M. Robert, A course in p-adic analysis, New York: SpringerVerlag, 2000. |
[18] |
R. Tauraso, q-Analogs of some congruences involving Catalan numbers, Adv. Appl. Math., 48 (2012), 603–614. https://doi.org/10.1016/j.aam.2011.12.002 doi: 10.1016/j.aam.2011.12.002
![]() |
[19] |
C. Wang, H. Pan, Supercongruences concerning truncated hypergeometric series, Math. Z., 2021. https://doi.org/10.1007/s00209-021-02772-0 doi: 10.1007/s00209-021-02772-0
![]() |
[20] |
C. A. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Comb. Theory A, 182 (2021), 105469. https://doi.org/10.1016/j.jcta.2021.105469 doi: 10.1016/j.jcta.2021.105469
![]() |
[21] |
C. A. Wei, Y. D. Liu, X. X. Wang, q-Supercongruences form the q-Saalschütz identity, Proc. Amer. Math. Soc., 149 (2021), 4853–4861. https://doi.org/10.1090/proc/15623 doi: 10.1090/proc/15623
![]() |
[22] |
W. Zudilin, Congruences for q-binomial coefficients, Ann. Comb., 23 (2019), 1123–1135. https://doi.org/10.1007/s00026-019-00461-8 doi: 10.1007/s00026-019-00461-8
![]() |