Processing math: 53%
Research article

Post-quantum Simpson's type inequalities for coordinated convex functions

  • Received: 23 September 2021 Accepted: 18 November 2021 Published: 24 November 2021
  • MSC : 26D10, 26A51, 26D15

  • In this paper, we prove some new Simpson's type inequalities for partial (p,q)-differentiable convex functions of two variables in the context of (p,q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.

    Citation: Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham. Post-quantum Simpson's type inequalities for coordinated convex functions[J]. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172

    Related Papers:

    [1] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [2] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai . Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes. AIMS Mathematics, 2021, 6(11): 11989-12010. doi: 10.3934/math.2021695
    [3] Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
    [4] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [5] Miguel Vivas-Cortez, Muhammad Aamir Ali, Hüseyin Budak, Ifra Bashir Sial . Post-quantum Ostrowski type integral inequalities for functions of two variables. AIMS Mathematics, 2022, 7(5): 8035-8063. doi: 10.3934/math.2022448
    [6] Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber . Fractional 3/8-Simpson type inequalities for differentiable convex functions. AIMS Mathematics, 2024, 9(3): 5349-5375. doi: 10.3934/math.2024258
    [7] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [8] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [9] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
    [10] Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456
  • In this paper, we prove some new Simpson's type inequalities for partial (p,q)-differentiable convex functions of two variables in the context of (p,q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.



    Thomas Simpson has evolved essential techniques for the numerical integration and estimation of definite integrals taken into consideration as Simpson's rule during (1710-1761). Nevertheless, a comparable approximation became utilized by J. Kepler nearly earlier than 10 decades, so it's also called Kepler's rule. Simpson's rule consists of the 3-point Newton-Cotes quadrature rule, so estimation primarily based totally on 3 steps quadratic kernel is every so often known as Newton-type results.

    1) Simpson's quadrature formula (Simpson's 1/3 rule)

    π2π1ϝ(x)dxπ2π16[ϝ(π1)+4ϝ(π1+π22)+ϝ(π2)].

    2) Simpson's second formula or Newton-Cotes quadrature formula (Simpson's 3/8 rule).

    π2π1ϝ(x)dxπ2π18[ϝ(π1)+3ϝ(2π1+π23)+3ϝ(π1+2π23)+ϝ(π2)].

    There are a huge variety of estimations associated with those quadrature rules inside the literature, certainly considered one among them is the subsequent estimation called Simpson's inequality:

    Theorem 1.1. Suppose that ϝ:[π1,π2]R is a four times continuously differentiable mapping on (π1,π2), and let ϝ(4)=supx(π1,π2)|ϝ(4)(x)|<. Then, one has the inequality

    |13[ϝ(π1)+ϝ(π2)2+2ϝ(π1+π22)]1π2π1π2π1ϝ(x)dx|12880ϝ(4)(π2π1)4.

    In recent years, many writers have focused on Simpson's type inequality in various categories of mappings. Specifically, some mathematicians have worked on the results of Simpson's and Newton's type in obtaining a convex map, because convexity theory is an effective and powerful way to solve a large number of problems from different branches of pure and applied mathematics. For example, Dragomir et al. [1] presented the new Simpson's inequalities and their applications in quadrature formulas for numerical integration. In addition, some inequalities of Simpson's type of s-convex functions were determined by Alomari et al. in [2]. Subsequently, Sarikaya et al. note the variance of Simpson's type inequality based on convexity in [3]. For the further studies of this area, one can consult [4,5,6].

    On the other side, in the domain of q-analysis, many works are being carried out initiating from Euler in order to attain adeptness in mathematics that constructs quantum computing q-calculus considered as a relationship between physics and mathematics. In different areas of mathematics, it has numerous applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, mechanics, the theory of relativity, and quantum theory [7,8]. Quantum calculus also has many applications in quantum information theory which is an interdisciplinary area that encompasses computer science, information theory, philosophy, and cryptography, among other areas [9,10]. Apparently, Euler invented this important mathematics branch. He used the q parameter in Newton's work on infinite series. Later, in a methodical manner, the q-calculus that knew without limits calculus was firstly given by F. H. Jackson [11,12]. In 1966, W. Al-Salam [13] introduced a q-analogue of the q -fractional integral and q-Riemann-Liouville fractional. Since then, the related research has gradually increased. In particular, in 2013, J. Tariboon and S. K. Ntouyas introduced π1Dq-difference operator and qπ1-integral in [14]. In 2020, S. Bermudo et al. introduced the notion of π2Dq derivative and qπ2 -integral in [15]. P. N. Sadjang generalized to quantum calculus and introduced the notions of post-quantum calculus or shortly (p,q)-calculus in [16]. Later, Soontharanon and Sitthiwirattham [17] introduced the fractional (p,q)-calculus. In [18], M. Tunç and E. G öv gave the post-quantum variant of π1Dq-difference operator and qπ1-integral. Recently, in 2021, Y.-M. Chu et al. introduced the notions of π2Dp,q derivative and (p,q)π2-integral in [19].

    Many integral inequalities have been studied using quantum and post-quantum integrals for various types of functions. For example, in [20,21,22,23,24,25,26,27,28], the authors used π1Dq,π2Dq-derivatives and qπ1,qπ2-integrals to prove Hermite-Hadamard integral inequalities and their left-right estimates for convex and coordinated convex functions. In [29], M. A. Noor et al. presented a generalized version of quantum integral inequalities. For generalized quasi-convex functions, E. R. Nwaeze et al. proved certain parameterized quantum integral inequalities in [30]. M. A. Khan et al. proved quantum Hermite-Hadamard inequality using the green function in [31]. H. Budak et al. [32], M. A. Ali et al. [33,34] and M. Vivas-Cortez et al. [35] developed new quantum Simpson's and quantum Newton's type inequalities for convex and coordinated convex functions. For quantum Ostrowski's inequalities for convex and co-ordinated convex functions, one can consult [36,37,38,39]. M. Kunt et al. [40] generalized the results of [22] and proved Hermite-Hadamard type inequalities and their left estimates using π1Dp,q-difference operator and (p,q)π1 -integral. Recently, M. A. Latif et al. [41] found the right estimates of Hermite-Hadamard type inequalities proved by M. Kunt et al. [40]. To prove Ostrowski's inequalities, Y.-M. Chu et al. [19] used the concepts of π2Dp,q-difference operator and (p,q)π2-integral.

    In the context of post-quantum calculus, we establish several Simpson's type inequalities for post-quantum differentiable co-ordinated convex functions. The findings in this paper are generalizations of the findings in [33], which is the primary motivation for this paper.

    The following is the structure of this paper: Section 2 provides a brief explanation of q-calculus concepts as well as some related works in this field. Section 3 goes over the fundamental concepts of post-quantum calculus and related inequalities. Section 4 establishes an important identity, and Section 5 establishes some new Simpson's type inequalities for coordinated convex functions in the context of post-quantum calculus. In Section 6, we prove three different integral identities in the context of post-quantum calculus, as well as some more Simpson's type inequalities for coordinated convex functions. Section 7 discusses some of the findings as well as potential future research directions.

    In this section, we present some required definitions and inequalities.

    In [12], F. H. Jackson gave the q-Jackson integral from 0 to π2 for 0<q<1 as follows:

    π20ϝ(x)dqx=(1q)π2n=0qnϝ(π2qn) (2.1)

    provided the sum converge absolutely. Moreover, he gave the q-Jackson integral in an arbitrary interval [π1,π2] as:

    π2π1ϝ(x)dqx=π20ϝ(x)dqxπ10ϝ(x)dqx.

    Definition 2.1. [14] For a continuous function ϝ:[π1,π2]R, then qπ1-derivative of ϝ at x[π1,π2] is characterized by the expression:

    π1Dqϝ(x)=ϝ(x)ϝ(qx+(1q)π1)(1q)(xπ1), xπ1. (2.2)

    For x=π1, we state π1Dqϝ(π1)=limxπ1π1Dqϝ(x) if it exists and it is finite.

    Definition 2.2. [15] For a continuous function ϝ:[π1,π2]R, then qπ2-derivative of ϝ at x[π1,π2] is characterized by the expression:

    π2Dqϝ(x)=ϝ(qx+(1q)π2)ϝ(x)(1q)(π2x), xπ2. (2.3)

    For x=π2, we state π2Dqϝ(π2)=limxπ2π2Dqϝ(x) if it exists and it is finite.

    Definition 2.3. [14] Let ϝ:[π1,π2]R be a continuous function. Then, the qπ1-definite integral on [π1,π2] is defined as:

    π2π1ϝ(x)π1dqx=(1q)(π2π1)n=0qnϝ(qnπ2+(1qn)π1)=(π2π1)10ϝ((1τ)π1+τπ2)dqτ. (2.4)

    On the other hand, S. Bermudo et al. gave the following new definition:

    Definition 2.4. [15] Let ϝ:[π1,π2]R be a continuous function. Then, the qπ2-definite integral on [π1,π2] is defined as:

    π2π1ϝ(x)π2dqx=(1q)(π2π1)n=0qnϝ(qnπ1+(1qn)π2)=(π2π1)10ϝ(τπ1+(1τ)π2)dqτ. (2.5)

    For more details about qπ2-integrals and corresponding inequalities one can see [15].

    Now, let's give the following notation which will be used many times in the next sections (see, [8]):

    [n]q=qn1q1.

    Moreover, we give the following Lemma for our main results:

    Lemma 2.1. [14] With the notation above, we have the equality

    π2π1(xπ1)απ1dqx=(π2π1)α+1[α+1]q

    for αR{1}.

    In [39], H. Budak et al. proved the following variant of quantum Ostrowski inequality by using the qπ1 and qπ2-integrals:

    Theorem 2.1. [39] Let ϝ:[π1,π2]RR be a function and π2Dqϝ, π1Dqϝ be two continuous and integrable functions on [π1,π2]. If |π2Dqϝ(τ)|,|π1Dqϝ(τ)|M for all τ[π1,π2], then we have the following quantum Ostrowski type inequality:

    |ϝ(x)1π2π1[xπ1ϝ(τ)π1dqτ+π2xϝ(τ)π2dqτ]|qM(π2π1)[(xπ1)2+(π2x)2[2]q] (2.6)

    for all x[π1,π2] where 0<q<1.

    On the other hand, the authors gave the following definitions of qπ1π3, qπ4π1, qπ3π2 and qπ2π4 integrals and related inequalities of Hermite-Hadamard type:

    Definition 2.5. [25,42] Suppose that ϝ:[π1,π2]×[π3,π4]R2R is a continuous function. Then, the following qπ1π3, qπ4π1, qπ2π3 and qπ2π4 integrals on [π1,π2]×[π3,π4] are defined by

    xπ1yπ3ϝ(τ,s)π3dq2sπ1dq1τ=(1q1)(1q2)(xπ1)(yπ3)×n=0m=0qn1qm2ϝ(qn1x+(1qn1)π1,qm2y+(1qm2)π3)
    xπ1π4yϝ(τ,s)π4dq2sπ1dq1τ=(1q1)(1q2)(xπ1)(π4y)×n=0m=0qn1qm2ϝ(qn1x+(1qn1)π1,qm2y+(1qm2)π4) (2.7)
    π2xyπ3ϝ(τ,s)π3dq2sπ2dq1τ=(1q1)(1q2)(π2x)(yπ3)×n=0m=0qn1qm2ϝ(qn1x+(1qn1)π2,qm2y+(1qm2)π3) (2.8)

    and

    π2xπ4yϝ(τ,s)π4dq2sπ2dq1τ=(1q1)(1q2)(π2x)(π4y)×n=0m=0qn1qm2ϝ(qn1x+(1qn1)π2,qm2y+(1qm2)π4) (2.9)

    respectively, for (x,y)[π1,π2]×[π3,π4].

    Definition 2.6. [42,43] Let ϝ:[π1,π2]×[π3,π4]R2R be a continuous function of two variables. Then, the partial q1 -derivatives, q2-derivatives and q1q2-derivatives at (x,y)[π1,π2]×[π3,π4] can be given as follows:

    π1q1ϝ(x,y)π1q1x=ϝ(q1x+(1q1)π1,y)ϝ(x,y)(1q1)(xπ1), xπ1π3q2ϝ(x,y)π3q2y=ϝ(x,q2y+(1q2)π3)ϝ(x,y)(1q2)(yπ3), yπ3π1,π32q1,q2ϝ(x,y)π1q1xπ3q2y=1(xπ1)(yπ3)(1q1)(1q2)×[ϝ(q1x+(1q1)π1,q2y+(1q2)π3)ϝ(q1x+(1q1)π1,y)ϝ(x,q2y+(1q2)π3)+ϝ(x,y)],xπ1yπ3π2q1ϝ(x,y)π2q1x=ϝ(q1x+(1q1)π2,y)ϝ(x,y)(1q1)(π2x), xπ2π4q2ϝ(x,y)π4q2y=ϝ(x,q2y+(1q2)π4)ϝ(x,y)(1q2)(π4y), yπ4
    π4π12q1,q2ϝ(x,y)π1q1xπ4q2y=1(xπ1)(π4y)(1q1)(1q2)×[ϝ(q1x+(1q1)π1,q2y+(1q2)π4)ϝ(q1x+(1q1)π1,y)ϝ(x,q2y+(1q2)π4)+ϝ(x,y)],xπ1yπ4,π2π32q1,q2ϝ(x,y)π2q1xπ3q2y=1(π2x)(yπ3)(1q1)(1q2)×[ϝ(q1x+(1q1)π2,q2y+(1q2)π3)ϝ(q1x+(1q1)π2,y)ϝ(x,q2y+(1q2)π3)+ϝ(x,y)],xπ2,yπ3,π2,π42q1,q2ϝ(x,y)π2q1xπ4q2y=1(π2x)(π4y)(1q1)(1q2)×[ϝ(q1x+(1q1)π2,q2y+(1q2)π4)ϝ(q1x+(1q1)π2,y)ϝ(x,q2y+(1q2)π4)+ϝ(x,y)],xπ2,yπ4.

    In this section, we review some fundamental notions and notations of (p,q)-calculus.

    The [n]p,q is said to be (p,q)-integers and expressed as:

    [n]p,q=pnqnpq

    with 0<q<p1. The [n]p,q! and [nk]! are called (p,q)-factorial and (p,q)-binomial, respectively, and expressed as:

    [n]p,q!=nk=1[k]p,q, n1[0]p,q!=1,[nk]!=[n]p,q![nk]p,q![k]p,q!.

    Definition 3.1. [16] The (p,q)-derivative of mapping ϝ:[π1,π2]R is given as:

    Dp,qϝ(x)=ϝ(px)ϝ(qx)(pq)x,x0

    with 0<q<p1.

    Definition 3.2. [18] The (p,q)π1-derivative of mapping ϝ:[π1,π2]R is given as:

    π1Dp,qϝ(x)=ϝ(px+(1p)π1)ϝ(qx+(1q)π1)(pq)(xπ1), xπ1 (3.1)

    with 0<q<p1. For x=π1, we state π1Dp,qϝ(π1)=limxπ1π1Dp,qϝ(x) if it exists and it is finite.

    Definition 3.3. [19] The (p,q)π2-derivative of mapping ϝ:[π1,π2]R is given as:

    π2Dp,qϝ(x)=ϝ(qx+(1q)π2)ϝ(px+(1p)π2)(pq)(π2x), xπ2. (3.2)

    with 0<q<p1. For x=π2, we state π2Dp,qϝ(π2)=limxπ2π2Dp,qϝ(x) if it exists and it is finite.

    Remark 3.1. It is clear that if we use p=1 in (3.1) and (3.2), then the equalities (3.1) and (3.2) reduce to (2.2) and (2.3), respectively.

    Definition 3.4. [18] The definite (p,q)π1-integral of mapping ϝ:[π1,π2]R on [π1,π2] is stated as:

    xπ1ϝ(τ)π1dp,qτ=(pq)(xπ1)n=0qnpn+1ϝ(qnpn+1x+(1qnpn+1)π1) (3.3)

    with 0<q<p1.

    Definition 3.5. [19] The definite (p,q)π2-integral of mapping ϝ:[π1,π2]R on [π1,π2] is stated as:

    π2xϝ(τ)π2dp,qτ=(pq)(π2x)n=0qnpn+1ϝ(qnpn+1x+(1qnpn+1)π2) (3.4)

    with 0<q<p1.

    Remark 3.2. It is evident that if we pick p=1 in (3.3) and (3.4), then the equalities (3.3) and (3.4) change into (2.4) and (2.5), respectively.

    Remark 3.3. If we take π1=0 and x=π2=1 in (3.3), then we have

    10ϝ(τ)0dp,qτ=(pq)n=0qnpn+1ϝ(qnpn+1).

    Similarly, by taking x=π1=0 and π2=1 in (3.4), then we obtain that

    10ϝ(τ)1dp,qτ=(pq)n=0qnpn+1ϝ(1qnpn+1).

    Lemma 3.1. [44] We have the following equalities

    π2π1(π2x)απ2dp,qx=(π2π1)α+1[α+1]p,q
    π2π1(xπ1)απ1dp,qx=(π2π1)α+1[α+1]p,q,

    where αR{1}.

    In [40], M. Kunt et al. proved the following Hermite-Hadamard type inequalities for convex functions via (p,q)π1-integral:

    Theorem 3.1. [40] For a convex mapping ϝ:[π1,π2]R which is differentiable on [π1,π2], the following inequalities hold for (p,q)π1-integral:

    ϝ(qπ1+pπ2[2]p,q)1p(π2π1)pπ2+(1p)π1π1ϝ(x)π1dp,qxqϝ(π1)+pϝ(π2)[2]p,q, (3.5)

    where 0<q<p1.

    Recently, M. Vivas-Cortez et al. [44] proved the following Hermite-Hadamard type inequalities for convex functions using the (p,q)π2 -integral:

    Theorem 3.2. [44] For a convex mapping ϝ:[π1,π2]R which is differentiable on [π1,π2], the following inequalities hold for (p,q)π2-integral:

    ϝ(pπ1+qπ2[2]p,q)1p(π2π1)π2pπ1+(1p)π2ϝ(x)π2dp,qxpϝ(π1)+qϝ(π2)[2]p,q, (3.6)

    where 0<q<p1.

    In [45] and [46], the authors gave the following notions of post-quantum integrals for the functions of two variables.

    Definition 3.6. [45,46] For a function ϝ:[π1,π2]×[π3,π4]R,

    1. the (p,q)π4π1 integral of ϝ is given as:

    xπ1π4yϝ(τ,s)π4dp2,q2sπ1dp1,q1τ=(p1q1)(p2q2)(xπ1)(π4y)×n=0m=0qn1pn+11qm2pm+12ϝ(qn1pn+11x+(1qn1pn+11)π1,qm2pm+12y+(1qm2pm+12)π4),

    where x,y[π1,p1π2+(1p1)π1]×[p2π3+(1p2)π4,π4].

    2. the (p,q)π2π3 integral of ϝ is given as:

    π2xyπ3ϝ(τ,s)π3dp2,q2sπ2dp1,q1τ=(p1q1)(p2q2)(π2x)(yπ3)×n=0m=0qn1pn+11qm2pm+12ϝ(qn1pn+11x+(1qn1pn+11)π2,qm2pm+12y+(1qm2pm+12)π3)

    where x,y[p1π1+(1p1)π1,π2]×[π3,p2π4+(1p2)π3].

    3. the (p,q)π2π4 integral of ϝ is given as:

    π2xπ4yϝ(τ,s)π4dp2,q2sπ2dp1,q1τ=(p1q1)(p2q2)(π2x)(π4y)×n=0m=0qn1pn+11qm2pm+12ϝ(qn1pn+11x+(1qn1pn+11)π2,qm2pm+12y+(1qm2pm+12)π4),

    where x,y[p1π1+(1p1)π2,π2]×[p2π3+(1p2)π4,π4].

    4. the (p,q)π1π3 integral of ϝ is given as:

    xπ1yπ3ϝ(τ,s)π3dp2,q2sπ1dp1,q1τ=(p1q1)(p2q2)(xπ1)(yπ3)×n=0m=0qn1pn+11qm2pm+12ϝ(qn1pn+11x+(1qn1pn+11)π1,qm2pm+12y+(1qm2pm+12)π3)

    where x,y[π1,p1π2+(1p1)π3]×[π3,p2π4+(1p2)π3].

    Remark 3.4. It is obvious that if we use p1=p2=1, then Definition 3.6 transforms into Definition 2.5.

    In [45], H. Kalsoom et al. introduced the following notions of post-quantum partial derivatives.

    Definition 3.7. [45] Let ϝ:[π1,π2]×[π3,π4]R2R be a continuous function of two variables. Then the partial p1q1 -derivatives, p2q2-derivatives and p1q1p2q2 -derivatives at (x,y)[π1,π2]×[π3,π4] can be given as follows:

    π1p1,q1ϝ(x,y)π1p1,q1x=ϝ(q1x+(1q1)π1,y)ϝ(p1x+(1p1)π1,y)(p1q1)(xπ1), xπ1π3p2,q2ϝ(x,y)π3p2,q2y=ϝ(x,q2y+(1q2)π3)ϝ(x,p2y+(1p2)π3)(p2q2)(yπ3), yπ3π1,π32p1,q1,p2,q2ϝ(x,y)π1p1,q1xπ3p2,q2y=1(xπ1)(yπ3)(p1q1)(p2q2)×[ϝ(q1x+(1q1)π1,q2y+(1q2)π3)ϝ(q1x+(1q1)π1,p2y+(1p2)π3)ϝ(p1x+(1p1)π1,q2y+(1q2)π3)+ϝ(p1x+(1p1)π1,p2y+(1p2)π3)],xπ1yπ3.

    Recently, Ali et al. gave the following notions:

    Definition 3.8. [47] Let ϝ:[π1,π2]×[π3,π4]R2R be a continuous function of two variables. Then the partial p1q1 -derivatives, p2q2-derivatives and p1q1p2q2 -derivatives at (x,y)[π1,π2]×[π3,π4] can be given as follows:

    π2p1,q1ϝ(x,y)π2p1,q1x=ϝ(q1x+(1q1)π2,y)ϝ(p1x+(1p1)π2,y)(p1q1)(π2x), xπ2π4p2,q2ϝ(x,y)π4p2,q2y=ϝ(x,q2y+(1q2)π4)ϝ(x,p2y+(1p2)π4)(p2q2)(π4y), yπ4π4π12p1,q1,p2,q2ϝ(x,y)π1p1,q1xπ4p2,q2y=1(xπ1)(π4y)(p1q1)(p2q2)[ϝ(q1x+(1q1)π1,q2y+(1q2)π4)ϝ(q1x+(1q1)π1,p2y+(1p2)π4)ϝ(p1x+(1p1)π1,q2y+(1q2)π4)+ϝ(p1x+(1p1)π1,p2y+(1p2)π4)],xπ1yπ4,
    π2π32p1,q1,p2,q2ϝ(x,y)π2p1,q1xπ3p2,q2y=1(π2x)(yπ3)(p1q1)(p2q2)[ϝ(q1x+(1q1)π2,q2y+(1q2)π3)ϝ(q1x+(1q1)π2,p2y+(1p2)π3)ϝ(p1x+(1p1)π2,q2y+(1q2)π3)+ϝ(p1x+(1p1)π2,p2y+(1p2)π3)],xπ2,yπ3,π2,π42p1,q1,p2,q2ϝ(x,y)π2p1,q1xπ4p2,q2y=1(π2x)(π4y)(p1q1)(p2q2)[ϝ(q1x+(1q1)π2,q2y+(1q2)π4)ϝ(q1x+(1q1)π2,p2y+(1p2)π4)ϝ(p1x+(1p1)π2,q2y+(1q2)π4)+ϝ(p1x+(1p1)π2,p2y+(1p2)π4)],xπ2,yπ4.

    Remark 3.5. It is obvious that if we set p1=p2=1 in Definitions 3.7 and 3.8, then we obtain the Definition 2.6.

    In this section, we deal with identity, which is required to reach our main estimations.

    We begin with the following lemma.

    Lemma 4.1. Let F:ΔR2R be a twice partially (p1,q1)(p2,q2)-differentiable function. If the partial (p1,q1)(p2,q2)-derivative b,d2(p1,q1),(p2,q2)F(t,s)bp1,q1tdp2,q2s is continuous and integrable on [a,b]×[c,d]Δ. Then following identity holds for (p1,q1)(p2,q2) -integrals.

    b,dI(p1,q1),(p2,q2)(F)=(ba)(dc)1010Λp1,q1(t)Λp2,q2(s)b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s, (4.1)

    where 0<q1<p11,0<q2<p21,

    b,dI(p1,q1),(p2,q2)(F)=F(a+b2,c)+F(a+b2,d)+4F(a+b2,c+d2)+F(a,c+d2)+F(b,c+d2)9+F(a,c)+F(a,d)+F(b,c)+F(b,d)3616(ba)bp1a+(1p1)b[F(x,c)+4F(x,c+d2)+F(x,d)]bdp1,q1x16(dc)dp2c+(1p2)d[F(a,y)+4F(a+b2,y)+F(b,y)]ddp2,q2y+1(ba)(dc)bp1a+(1p1)bdp2c+(1p2)dF(x,y)bdp1,q1xddp2,q2y

    and

    Λp1,q1(t)={(q1t16),  t[0,12),(q1t56), t[12,1],
    Λp2,q2(s)={(q2s16), s[0,12),(q2s56), s[12,1].

    Proof. Because of fundamental properties of (p,q)-integrals and the definition of Λp1,q1(t) and Λp2,q2(s), it is easy to see that

    1010Λp1,q1(t)Λp2,q2(s)b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=49120120b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s+2312010(q2s56)b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s+2310120(q1t56)b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s+1010(q1t56)(q2s56)b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s.=I1+I2+I3+I4. (4.2)

    From Definition 3.8, we have

    b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2s=1(p1q1)(p2q2)(ba)(dc)ts[F(tq1a+(1tq1)b,sq2c+(1sq2)d)F(tq1a+(1tq1)b,sp2c+(1sp2)d)F(tp1a+(1tp1)b,sq2c+(1sq2)d)+F(tp1a+(1tp1)b,sp2c+(1sp2)d)].

    It is need to calculate the integrals in the right side of (4.2) in order to finish this proof. By using the definition of (p1,q1)(p2,q2)-integrals, we obtain that

    120120b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(p1q1)(p2q2)(ba)(dc)1201201ts{F(tq1a+(1tq1)b,sq2c+(1sq2)d)F(tq1a+(1tq1)b,sp2c+(1sp2)d)F(tp1a+(1tp1)b,sq2c+(1sq2)d)+F(tp1a+(1tp1)b,sp2c+(1sp2)d)}dp1,q1tdp2,q2s (4.3)
    =1(ba)(dc){n=0m=0F(qn+112pn+11a+(1qn+112pn+11)b,qm+122pm+12c+(1qm+122pm+12)d)n=0m=0F(qn+112pn+11a+(1qn+112pn+11)b,qm22pm2c+(1qm22pm2)d)n=0m=0F(qn12pn1a+(1qn12pn1)b,qm+122pm+12c+(1qm+122pm+12)d)+n=0m=0F(qn12pn1a+(1qn12pn1)b,qm22pm2c+(1qm22pm2)d)}=1(ba)(dc)[F(b,d)F(a+b2,d)F(b,c+d2)+F(a+b2,c+d2)].

    So

    I1=49(ba)(dc)[F(b,d)F(a+b2,d)F(b,c+d2)+F(a+b2,c+d2)]

    Now from Definition 2.5, we obtain the following

    12010sb,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(p1q1)(p2q2)(ba)(dc)120101t{F(tq1a+(1tq1)b,sq2c+(1sq2)d)F(tq1a+(1tq1)b,sp2c+(1sp2)d)F(tp1a+(1tp1)b,sq2c+(1sq2)d)+F(tp1a+(1tp1)b,sp2c+(1sp2)d)}dp1,q1tdp2,q2s=1(ba)(dc)×{n=0m=0qm2pm+12(F(qn+112pn+11a+(1qn+112pn+11)b,qm+12pm+12c+(1qm+12pm+12)d))n=0m=0qm2pm+12(F(qn+112pn+11a+(1qn+112pn+11)b,qm2pm2c+(1qm2pm2)d))n=0m=0qm2pm+12(F(qn12pn1a+(1qn12pn1)b,qm+12pm+12c+(1qm+12pm+12)d))+n=0m=0qm2pm+12(F(qn12pn1a+(1qn12pn1)b,qm2pm2c+(1qm2pm2)d))}=1(ba)(dc){m=0qm2pm+12[n=0F(qn+112pn+11a+(1qn+112pn+11)b,qm+12pm+12c+(1qm+12pm+12)d)n=0(F(qn12pn1a+(1qn12pn1)b,qm+12pm+12c+(1qm+12pm+12)d))]+m=0qm2pm+12[n=0F(qn12pn1a+(1qn12pn1)b,qm2pm2c+(1qm2pm2)d) (4.4)
    n=0F(qn+112pn+11a+(1qn+112pn+11)b,qm2pm2c+(1qm2pm2)d)]}=1(ba)(dc){m=0qm2pm+12F(b,qm+12pm+12c+(1qm+12pm+12)d)m=0qm2pm+12F(b,qm2pm2c+(1qm2pm2)d)+m=0qm2pm+12F(a+b2,qm2pm2c+(1qm2pm2)d)m=0qm2pm+12F(a+b2,qm+12pm+12c+(1qm+12pm+12)d)}=1(ba)(dc){p2q2q2m=0qm2pm+12F(b,qm2pm2c+(1qm2pm2)d)1q2F(b,c)p2q2q2m0qm2pm+12F(a+b2,qm2pm2c+(1qm2pm2)d)+1q2F(a+b2,c)=1q2(ba)(dc)[1dcdp2c+(1p2)dF(b,y)ddp2,q2y1dcdp2c+(1p2)dF(a+b2,y)ddp2,q2yF(b,c)+F(a+b2,y)].

    By using the similar operations used in (4.3), we have

    12010b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(ba)(dc)[F(b,d)F(a+b2,d)F(b,c)+F(a+b2,c)]. (4.5)

    From (4.4) and (4.5), we obtain that

    I2=23(ba)(dc){1dcdp2c+(1p2)dF(b,y)ddp2,q2y1dcdp2c+(1p2)dF(a+b2,y)ddp2,q2yF(b,c)+F(a+b2,c)}10p1p218(ba)(dc){F(b,d)F(a+b2,d)F(b,c)+F(a+b2,c)}.

    Similarly, we have

    I3=23(ba)(dc){1babp1a+(1p1)bF(x,d)bdp1,q1x1babp1a+(1p1)bF(x,c+d2)bdp1,q1xF(a,d)+F(a,c+d2)}10p1p218(ba)(dc){F(b,d)F(b,c+d2)F(a,d)+F(a,c+d2)}.

    Also, we have

    1010b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(ba)(dc)[F(b,d)F(a,d)F(b,c)+F(a,c)], (4.6)
    1010sb,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(ba)(dc){1q2(dc)dp2c+(1p2)dF(b,y)ddp2,q2y1q2(dc)dp2c+(1p2)dF(a,y)ddp2,q2y1q2F(b,c)+1q2F(a,c)}, (4.7)
    1010tb,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(ba)(dc){1q1(ba)bp1a+(1p1)bF(x,d)bdp1,q1x1q1(ba)bp1a+(1p1)bF(x,c)bdp1,q1x1q1F(a,d)+1q1F(a,c)} (4.8)

    and

    1010tsb,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2sdp1,q1tdp2,q2s=1(ba)(dc){m=0n=0qn1pn+11qm2pm+12F(qn+11pn+11a+(1qn+11pn+11)b,qm+12pm+12c+(1qm+12pm+12)d)m=0n=0qn1pn+11qm2pm+12F(qn+11pn+11a+(1qn+11pn+11)b,qm2pm2c+(1qm2pm2)d)m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm+12pm+12c+(1qm+12pm+12)d)+m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm2pm2c+(1qm2pm2)d)}=1(ba)(dc){p1p2q1q2[m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm2pm2c+(1qm2pm2)d)m=0qm2pm+12F(a,qm2pm2c+(1qm2pm2)d)n=0qn1pn+11F(qn1pn1a+(1qn1pn1)b,c)+F(a,c)]p1q1[m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm2pm2c+(1qm2pm2)d)m=0qm2pm+12F(a,qm2pm2c+(1qm2pm2)d)]p2q2[m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm2pm2c+(1qm2pm2)d)n=0qn1pn+11F(qn1pn1a+(1qn1pn1)b,c)]+m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm2pm2c+(1qm2pm2)d)} (4.9)
    =1(ba)(dc){(p1q1)(p2q2)q1q2m=0n=0qn1pn+11qm2pm+12F(qn1pn1a+(1qn1pn1)b,qm2pm2c+(1qm2pm2)d)p2q2q1q2m=0qm2pm+12F(a,qm2pm2c+(1qm2pm2)d)p1q1q1q2n=0qn1pn+11F(qn1pn1a+(1qn1pn1)b,c)+1q1q2F(a,c)}=1(ba)(dc){1q1q2(ba)(dc)bp1a+(1p1)bdp2c+(1p2)dF(x,y)bdp1,q1xddp2,q2y1q1q2(ba)bpa+(1p)bF(x,c)bdp1,q1x1q1q2(dc)dp2c+(1p2)dF(a,x)ddp2,q2y+1q1q2F(a,c)}.

    From (4.6)-(4.9), we obtain that

    I4=1(ba)(dc){1(ba)(dc)bp1a+(1p1)bdp2c+(1p2)dF(x,y)bdp1,q1xddp2,q2y1babp1a+(1p1)bF(x,c)bdp1,q1x1dcdp2c+(1p2)dF(a,y)ddp2,q2y+F(a,c)}56(ba)(dc){1babp1a+(1p1)bF(x,d)bdp1,q1x1babp1a+(1p1)bF(x,c)bdp1,q1x+F(a,c)F(a,d)+1dcdp2c+(1p2)dF(b,y)ddp2,q2y1dcdp2c+(1p2)dF(a,y)ddp2,q2y+F(a,c)F(b,c)}+2536(ba)(dc){F(b,d)F(a,d)F(b,c)+F(a,c)}.

    Now using the calculated integrals (I1)(I4) in (4.2) and multiplying the resulting one with (ba)(dc), then we have desired equality (4.1) which accomplishes the proof.

    Remark 4.1. In Lemma 4.1, if we set p1=p2=1, then the Lemma 4.1 reduces to the [[33] Lemma 3].

    Remark 4.2. In Lemma 4.1, if we use p1=p2=1 and q1,q21, then the Lemma 4.1 becomes [[6] Lemma 1].

    For the sake of brevity, we present some calculated integrals before providing new estimates.

    A1(p,q)=120|qt16|tdp,qt={p22pq2q224[2]p,q[3]p,q0<q<137p2+18pq+18q2216[2]p,q[3]p,q13q<1, (5.1)
    A2(p,q)=120|qt16|(1t)dqt={[2]p,q(2[3]p,q+3q)[3]p,q(1+6q)24[2]p,q[3]p,q0<q<13[2]p,q(6[3]p,q+25q)+7[3]p,q(1+6q)216[2]p,q[3]p,q13q<1, (5.2)
    A3(p,q)=112|qt56|tdqt={15p26pq6q224[2]p,q[3]p,q0<q<5625p2+18pq+18q2216[2]p,q[3]p,q56q<1 (5.3)
    A4(p,q)=112|qt56|(1t)dqt={[2]p,q(10[3]p,q+21q)[3]p,q(5+6q)24[2]p,q[3]p,q0<q<56[2]p,q(30[3]p,q+7q)5[3]p,q(5+6q)216[2]p,q[3]p,q56q<1, (5.4)
    A5(p,q)=120|qt16|dqt={3q[2]p,q12[2]q0<q<137q[2]p,q36[2]p,q13q<1,, (5.5)
    A6(p,q)=112|qt56|dqt={9q+5[2]p,q12[2]p,q0<q<565q+5[2]p,q36[2]p,q56q<1.. (5.6)

    Using the identity from the previous section, we now provide some new quantum estimates.

    Theorem 5.1. Let F:ΔR2R be a twice partially (p1,q1)(p2,q2)-differentiable function on Δ such that partial (p1,q1)(p2,q2) -derivative b,d2(p1,q1),(p2,q2)F(t,s)bp1,q1tdp2,q2s is continuous and integrable on [a,b]×[c,d]Δ. Then we have following inequality provided that |b,d2(p1,q1),(p2,q2)F(t,s)bp1,q1tdp2,q2s| is convex on [a,b]×[c,d].

    |b,dI(p1,q1),(p2,q2)(F)|(ba)(dc)[(A1(p1,q1)+A3(p1,q1))(A1(p2,q2)+A3(p2,q2))×|b,d2(p1,q1),(p2,q2)F(a,c)bp1,q1tdp2,q2s|+(A1(p1,q1)+A3(p1,q1))(A2(p2,q2)+A4(p2,q2))|b,d2(p1,q1),(p2,q2)F(a,d)bp1,q1tdp2,q2s|+(A2(p1,q1)+A4(p1,q1))(A1(p2,q2)+A3(p2,q2))|b,d2(p1,q1),(p2,q2)F(b,c)bp1,q1tdp2,q2s|+(A2(p1,q1)+A4(p1,q1))(A2(p2,q2)+A4(p2,q2))|b,d2(p1,q1),(p2,q2)F(b,d)bp1,q1tdp2,q2s|], (5.7)

    where 0<q1<p11,0<q2<p21.

    Proof. On taking modulus of the identity of Lemma 4.1, because of the properties of modulus, we find that

    |b,dI(p1,q1),(p2,q2)(F)|(ba)(dc)1010|Λq1(t)Λq2(s)|×|b,d2(p1,q1),(p2,q2)F(ta+(1t)b,sc+(1s)d)bp1,q1tdp2,q2s|dp1,q1tdp2,q2s (5.8)

    Now using the convexity of |b,d2(p1,q1),(p2,q2)F(t,s)bp1,q1tdp2,q2s|, then (5.8) becomes

    |b,dI(p1,q1),(p2,q2)(F)|(ba)(dc)10Λq2(s)[10Λq1(t){t|b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|+(1t)|b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|}dp1,q1t]dp2,q2s. (5.9)

    Now we compute the integrals appear in right side of inequality (5.9)

    10Λq1(t){t|b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|+(1t)|b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|}dp1,q1t=120t|q1t16||b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|dp1,q1t+120(1t)|q1t16||b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|dp1,q1t+112t|q1t56||b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|dp1,q1t+120(1t)|q1t56||b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|dp1,q1t.

    From (5.1)-(5.4), we obtain that

    10Λq1(t){t|b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|+(1t)|b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|}dp1,q1t=|b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|(A1(p1,q1)+A3(p1,q1))+|b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|(A2(p1,q1)+A4(p1,q1)).

    Thus, we have

    |b,dIq1,q2(F)|(ba)(dc)10Λq2(s)[|b,d2(p1,q1),(p2,q2)F(a,sc+(1s)d)bp1,q1tdp2,q2s|(A1(p1,q1)+A3(p1,q1))+|b,d2(p1,q1),(p2,q2)F(b,sc+(1s)d)bp1,q1tdp2,q2s|(A2(p1,q1)+A4(p1,q1))]dp2,q2s
    \begin{eqnarray*} &\leq &\left( b-a\right) \left( d-c\right) \int_{0}^{1}\Lambda _{q_{2}}\left( s\right) \left[ \left \{ s\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \right. \right. \\ &&+\left( 1-s\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} \right \vert \left. \times \left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \right \} +\left \{ s\left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{ ^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \right. \\ &&\left.+\left( 1-s\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \left. \times \left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \right \} \right] d_{p_{2}, q_{2}}s\\ & = &\left( b-a\right) \left( d-c\right) \left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left[ \left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{ ^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{0}^{\frac{1}{2}}s\left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{2}, q_{2}}s\right. \\ &&+\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{0}^{\frac{1}{ 2}}\left( 1-s\right) \left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{2}, q_{2}}s +\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{\frac{1}{2} }^{1}s\left \vert q_{2}s-\frac{5}{6}\right \vert d_{p_{2}, q_{2}}s \\ &&\left. +\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{\frac{1}{2} }^{1}\left( 1-s\right) \left \vert q_{2}s-\frac{5}{6}\right \vert d_{p_{2}, q_{2}}s\right] +\left( b-a\right) \left( d-c\right) \left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right)\\ &&\times \left[ \left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{ ^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{0}^{\frac{1}{2}}s\left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{2}, q_{2}}s\right.+\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{0}^{\frac{1}{ 2}}\left( 1-s\right) \left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{2}, q_{2}}s \\ &&+\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{\frac{1}{2} }^{1}s\left \vert q_{2}s-\frac{5}{6}\right \vert d_{p_{2}, q_{2}}s \left. +\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \int_{\frac{1}{2} }^{1}\left( 1-s\right) \left \vert q_{2}s-\frac{5}{6}\right \vert d_{p_{2}, q_{2}}s\right] . \end{eqnarray*}

    From (5.1)-(5.4), we have

    \begin{eqnarray*} &&\left \vert ^{b, \; d}\mathcal{I}_{q_{1}, q_{2}}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \Bigg[ \left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} \right \vert \\ &&+\left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \\ &&+\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \\ && +\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \Bigg] . \end{eqnarray*}

    Hence the proof is completed.

    Remark 5.1. If we take p_{1} = p_{2} = 1 in Theorem 5.1, then Theorem 5.1 reduces to [[33] Theorem 7].

    Remark 5.2. In Theorem 5.1, if we take p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-} , then the Theorem 5.1 becomes [6,Theorem 3].

    Theorem 5.2. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p > 1 and \frac{1}{r} +\frac{1}{p} = 1 . Then we have following inequality.

    \begin{eqnarray} &&\left \vert ^{b, \; d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left( \int_{0}^{1}\int_{0}^{1}\left \vert \Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \right \vert ^{r}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}} \\ &&\left[ \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. +\frac{\left[ 2\right] _{p_{2}, q_{2}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ &&+\frac{\left[ 2\right] _{p_{1}, q_{1}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \left. +\frac{\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2 \right] _{p_{2}, q_{2}}}\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right] ^{ \frac{1}{p}}, \end{eqnarray} (5.10)

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Proof. Applying well-known Hölder's inequality for the integrals in right side of (5.8), it is found that

    \begin{eqnarray} &&\left \vert ^{b, \; d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ \left( \int_{0}^{1}\int_{0}^{1}\left \vert \Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \right \vert ^{r}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}}\right. \\ &&\left. \times \left( \int_{0}^{1}\int_{0}^{1}\left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{p}}\right] . \end{eqnarray} (5.11)

    By applying convexity of \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}, then (5.11) becomes

    \begin{eqnarray} &&\left \vert ^{b, \; d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ \left( \int_{0}^{1}\int_{0}^{1}\left \vert \Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \right \vert ^{r}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}}\right. \\ &&\times \left( \int_{0}^{1}\int_{0}^{1}\left[ ts\left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+t\left( 1-s\right) \; \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \\ &&+\left( 1-t\right) s\; \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \left. \left. \left. +\left( 1-t\right) \left( 1-s\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \right] d_{q_{1}}td_{q_{2}}s\right) ^{\frac{1}{p}}\right] . \end{eqnarray} (5.12)

    Now, if we apply the concept of Lemma 2.1 for a = 0 to the above quantum integrals, we attain

    \begin{eqnarray} \int_{0}^{1}\int_{0}^{1}tsd_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s & = &\left( \int_{0}^{1}td_{p_{1}, q_{1}}t\right) \left( \int_{0}^{1}sd_{p_{2}, q_{2}}s\right) \\ & = &\frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}, \end{eqnarray} (5.13)
    \begin{equation} \int_{0}^{1}\int_{0}^{1}t\left( 1-s\right) d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s = \frac{\left[ 2\right] _{p_{2}, q_{2}}-1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}, \end{equation} (5.14)
    \begin{equation} \int_{0}^{1}\int_{0}^{1}\left( 1-t\right) sd_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s = \frac{\left[ 2\right] _{p_{1}, q_{1}}-1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}, \end{equation} (5.15)
    \begin{equation} \int_{0}^{1}\int_{0}^{1}\left( 1-t\right) \left( 1-s\right) d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s = \frac{\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) }{ \left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}. \end{equation} (5.16)

    By substituting the calculated integrals (5.13)-(5.16) in (5.12), then we obtain the desired inequality (5.10) which finishes the proof.

    Remark 5.3. If we take p_{1} = p_{2} = 1 in Theorem 5.2, then Theorem 5.2 reduces to [[33] Theorem 8].

    Theorem 5.3. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p\geq 1 . Then we have following inequality.

    \begin{eqnarray} &&\left \vert ^{b, \; d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ A_{5}^{1-\frac{1}{p} }\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p}}\left( p_{2}, q_{2}\right) \right. \left \{ A_{1}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right. \\ &&\left. +A_{2}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right \} ^{\frac{1}{p}} \\ &&+A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left \{ A_{1}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right. \\ &&\left. +A_{2}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left \{ A_{3}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{1}\left( p_{1}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right. \\ &&\left. +A_{4}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left \{ A_{3}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right. \end{eqnarray} (5.17)
    \begin{eqnarray} &&\left. \left. +A_{4}\left( p_{1}, q_{1}\right) \left( \begin{array}{c} A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right) \right \} ^{\frac{1}{p}}\right] \end{eqnarray}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Proof. Applying well-known power mean inequality for integrals in right side of (5.8), it is found that

    \begin{eqnarray} &&\left \vert ^{b, \; d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ \left( \int_{0}^{\frac{1}{2 }}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{1}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}}\right. \\ &&\times \left( \int_{0}^{\frac{1}{2}}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{1}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert \right. \left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}} \\ &&+\left( \int_{0}^{\frac{1}{2}}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t- \frac{1}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \left( \int_{0}^{\frac{1}{2}}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t-\frac{1}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert \right. \\ &&\left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}} \\ &&+\left( \int_{\frac{1}{2}}^{1}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t- \frac{5}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert \; d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \left( \int_{\frac{1}{2}}^{1}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{5}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert \right. \\ &&\left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}} \\ &&+\left( \int_{\frac{1}{2}}^{1}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t- \frac{5}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert \; d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \left( \int_{\frac{1}{2}}^{1}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t-\frac{5}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert \; d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right. \\ &&\left. \left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}}\right] . \end{eqnarray} (5.18)

    By applying convexity of \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}, then we have

    \begin{eqnarray} &&\left( \int_{0}^{\frac{1}{2}}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t- \frac{1}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \left( \int_{0}^{\frac{1}{2}}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{1}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert \right. \\ &&\left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}} \end{eqnarray} (5.19)
    \begin{eqnarray} &\leq &\left( \left( \int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{1}{6} \right \vert d_{p_{1}, q_{1}}t\right) \left( \int_{0}^{\frac{1}{2}}\left \vert q_{2}s-\frac{1}{6}\right \vert d_{p_{2}, q_{2}}s\right) \right) ^{1- \frac{1}{p}} \\ &&\left[ \int_{0}^{\frac{1}{2}}\left \vert q_{2}s-\frac{1}{6}\right \vert \left \{ \int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{1}{6}\right \vert \left( t\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, sc+\left( 1-s\right) d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \right. \\ &&\left. \left. \left. +\left( 1-t\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, sc+\left( 1-s\right) d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) d_{p_{1}, q_{1}}t\right \} d_{p_{2}, q_{2}}s\right] ^{\frac{1}{p}} \\ & = &A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left[ A_{1}\left( p_{1}, q_{1}\right) \int_{0}^{\frac{1}{2}}\left \vert q_{2}s-\frac{1}{6}\right \vert \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, sc+\left( 1-s\right) d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{2}, q_{2}}s\right. \\ &&\left. +A_{2}\left( p_{1}, q_{1}\right) \int_{0}^{\frac{1}{2}}\left \vert q_{2}s-\frac{1}{6}\right \vert \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, sc+\left( 1-s\right) d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{2}, q_{2}}s\right] ^{\frac{1}{p}} \\ &\leq &A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left[ A_{1}\left( p_{1}, q_{1}\right) \int_{0}^{ \frac{1}{2}}\left \vert q_{2}s-\frac{1}{6}\right \vert \left( s\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \\ &&\left. +\left( 1-s\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) d_{p_{2}, q_{2}}s+A_{2}\left( p_{1}, q_{1}\right) \int_{0}^{\frac{1}{2}}\left \vert q_{2}s-\frac{1}{6}\right \vert \\ &&\left. \times \left( s\left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+\left( 1-s\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) d_{p_{2}, q_{2}}s\right] ^{\frac{1}{p}} \\ & = &A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left[ A_{1}\left( p_{1}, q_{1}\right) \left \{ A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \\ &&\left. +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} \left. +A_{2}\left( p_{1}, q_{1}\right) \left \{ \begin{array}{c} A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \end{array} \right \} \right] ^{\frac{1}{p}}. \end{eqnarray}

    By applying the similar operations, we obtain that

    \begin{eqnarray} &&\left( \int_{0}^{\frac{1}{2}}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t- \frac{1}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \\ &&\times \left( \int_{0}^{\frac{1}{2}}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t-\frac{1}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert \right. \\ &&\left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}} \\ &\leq &A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left[ A_{1}\left( p_{1}, q_{1}\right) \left \{ A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \\ &&\left. +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} \end{eqnarray} (5.20)
    \begin{eqnarray} &&+A_{2}\left( p_{1}, q_{1}\right) \left \{ A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} \right \vert ^{p}\right. \left. \left. +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} ^{\frac{1}{p}}\right] , \end{eqnarray}
    \begin{eqnarray} &&\left( \int_{\frac{1}{2}}^{1}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t- \frac{5}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert \; d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \left( \int_{\frac{1}{2}}^{1}\int_{0}^{\frac{1}{2}}\left \vert q_{1}t-\frac{5}{6}\right \vert \left \vert q_{2}s-\frac{1}{6}\right \vert \right. \\ &&\left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{ \frac{1}{p}} \\ &\leq &A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left[ A_{3}\left( p_{1}, q_{1}\right) \left \{ A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \\ &&\left. +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} +A_{4}\left( p_{1}, q_{1}\right) \left \{ A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} \right \vert ^{p}\right. \\ &&\left. \left. +A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} \right] ^{\frac{1}{p}}, \end{eqnarray} (5.21)
    \begin{eqnarray} &&\left( \int_{\frac{1}{2}}^{1}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t- \frac{5}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert \; d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right) ^{1-\frac{1}{p}} \\ &&\times \left[ \int_{\frac{1}{2}}^{1}\int_{\frac{1}{2}}^{1}\left \vert q_{1}t-\frac{5}{6}\right \vert \left \vert q_{2}s-\frac{5}{6}\right \vert \; d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right. \\ &&\left. \times \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sc+\left( 1-s\right) d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s\right] ^{ \frac{1}{p}} \\ &\leq &A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \left[ A_{3}\left( p_{1}, q_{1}\right) \left \{ A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. \right. \\ &&\left. \left. +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} \right] +A_{4}\left( p_{1}, q_{1}\right) \left \{ A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} \right \vert ^{p}\right. \\ &&\left. \left. +A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{ ^{b, \; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right \} \right] ^{\frac{1}{p}}. \end{eqnarray} (5.22)

    From (5.18)-(5.22), we obtain desired inequality and the proof is ended.

    Remark 5.4. If we take p_{1} = p_{2} = 1 in Theorem 5.3, then Theorem 5.3 reduces to [[33] Theorem 9].

    We prove some additional estimates for post-quantum Simpson's inequalities in this section.

    Lemma 6.1. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1}, q_{1})(p_{2}, q_{2}) -differentiable function. If the partial (p_{1}, q_{1})(p_{2}, q_{2}) -derivative \frac{ _{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta . Then following identity holds for (p_{1}, q_{1})(p_{2}, q_{2}) -integrals.

    \begin{eqnarray} &&_{a}^{d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F) \\ & = &\left( b-a\right) \left( d-c\right) \\ &&\times \int_{0}^{1}\int_{0}^{1}\Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( tb+\left( 1-t\right) a, sc+\left( 1-s\right) d\right) }{_{a}\partial _{p_{1, }q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s, \end{eqnarray} (6.1)

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1 ,

    \begin{eqnarray*} _{a}^{d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F) & = &\frac{F\left( \frac{ a+b}{2}, c\right) +F\left( \frac{a+b}{2}, d\right) +4F\left( \frac{a+b}{2}, \frac{c+d}{2}\right) +F\left( a, \frac{c+d}{2}\right) +F\left( b, \frac{c+d}{2} \right) }{9} \\ &&+\frac{F\left( a, c\right) +F\left( a, d\right) +F\left( b, c\right) +F\left( b, d\right) }{36} \\ &&-\frac{1}{6\left( b-a\right) }\int_{a}^{p_{1}b+(1-p_{1})a}\left[ F\left( x, c\right) +4F\left( x, \frac{c+d}{2}\right) +F\left( x, d\right) \right] \; _{a}d_{p_{1, }q_{1}}x \\ &&-\frac{1}{6\left( d-c\right) }\int_{p_{2}c+(1-p_{2})d}^{d}\left[ F\left( a, y\right) +4F\left( \frac{a+b}{2}, y\right) +F\left( b, y\right) \right] \; ^{d}d_{p_{2, }q_{2}}y \\ &&+\frac{1}{\left( b-a\right) \left( d-c\right) } \int_{a}^{p_{1}b+(1-p_{1})a}\int_{p_{2}c+(1-p_{2})d}^{d}F\left( x, y\right) \; _{a}d_{p_{1, }q_{1}}x\; ^{d}d_{p_{2, }q_{2}}y \end{eqnarray*}

    and

    \begin{equation*} \Lambda _{p_{1}, q_{1}}\left( t\right) = \left \{ \begin{array}{c} \left( q_{1}t-\frac{1}{6}\right) , \; \ \ t\in \left[ 0, \frac{1}{2}\right) , \\ \\ \left( q_{1}t-\frac{5}{6}\right) , \; \ t\in \left[ \frac{1}{2}, 1\right] , \end{array} \right. \end{equation*}
    \begin{equation*} \Lambda _{p_{2}, q_{2}}\left( s\right) = \left \{ \begin{array}{c} \left( q_{2}s-\frac{1}{6}\right) , \; \ s\in \left[ 0, \frac{1}{2}\right) , \\ \\ \left( q_{2}s-\frac{5}{6}\right) , \; \ s\in \left[ \frac{1}{2}, 1\right] . \end{array} \right. \end{equation*}

    Proof. The required inequality (6.1) may be obtained by applying the technique employed in the proof of Lemma 4.1 while taking into consideration the definition of \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} .

    Remark 6.1. If we take p_{1} = p_{2} = 1 in Lemma 6.1, then Lemma 6.1 reduces to [[33] Lemma 4].

    Theorem 6.1. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . Then we have following inequality provided that \left \vert \frac{ _{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{ _{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert is convex on \left[a, b\right] \times \left[c, d\right] .

    \begin{eqnarray*} &&\left \vert _{a}^{d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \Bigg[ \left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} \right \vert \\ &&+\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \\ &&+\left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \\ && +\left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert \Bigg] , \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1 .

    Remark 6.2. If we take p_{1} = p_{2} = 1 in Theorem 6.1, then Theorem 6.1 reduces to [[33] Theorem 10].

    Theorem 6.2. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p > 1 and \frac{1}{r} +\frac{1}{p} = 1 . Then we have following inequality.

    \begin{eqnarray*} &&\left \vert _{a}^{d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left( \int_{0}^{1}\int_{0}^{1}\left \vert \Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \right \vert ^{r}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}} \\ &&\left[ \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. +\frac{\left[ 2\right] _{p_{2}, q_{2}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ &&+\frac{\left[ 2\right] _{p_{1}, q_{1}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \left. +\frac{\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2 \right] _{p_{2}, q_{2}}}\left \vert \frac{_{a}^{\; d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right] ^{ \frac{1}{p}}, \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Remark 6.3. If we take p_{1} = p_{2} = 1 in Theorem 6.2, then Theorem 6.2 reduces to [[33] Theorem 11].

    Theorem 6.3. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p\geq 1 . Then we have following inequality.

    \begin{eqnarray*} &&\left \vert _{a}^{d}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ A_{5}^{1-\frac{1}{p} }\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p}}\left( p_{2}, q_{2}\right) \right. \\ &&\times \left \{ A_{1}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \\ && +A_{2}\left( p_{1}, q_{1}\right)\left. \times \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}} \\ &&+A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left \{ A_{1}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \\ && +A_{2}\left( p_{1}, q_{1}\right) \left. \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left \{ A_{3}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{1}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \\ &&+A_{4}\left( p_{1}, q_{1}\right) \left. \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left \{ A_{3}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \\ && +A_{4}\left( p_{1}, q_{1}\right) \left. \left. \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a}^{d}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; ^{d}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}}\right] \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Remark 6.4. If we take p_{1} = p_{2} = 1 in Theorem 6.3, then Theorem 6.3 reduces to [[33] Theorem 12].

    Lemma 6.2. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1}, q_{1})(p_{2}, q_{2}) -differentiable function. If the partial (p_{1}, q_{1})(p_{2}, q_{2}) -derivative \frac{ _{c}^{\; b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta . Then following identity holds for (p_{1}, q_{1})(p_{2}, q_{2}) -integrals.

    \begin{eqnarray} &&_{c}^{b}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F) \\ & = &\left( b-a\right) \left( d-c\right) \int_{0}^{1}\int_{0}^{1}\Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \frac{_{c}^{\; b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( ta+\left( 1-t\right) b, sd+\left( 1-s\right) c\right) }{^{b}\partial _{p_{1, }q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s, \end{eqnarray} (6.2)

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1 ,

    \begin{eqnarray*} _{c}^{b}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F) & = &\frac{F\left( \frac{ a+b}{2}, c\right) +F\left( \frac{a+b}{2}, d\right) +4F\left( \frac{a+b}{2}, \frac{c+d}{2}\right) +F\left( a, \frac{c+d}{2}\right) +F\left( b, \frac{c+d}{2} \right) }{9} \\ &&+\frac{F\left( a, c\right) +F\left( a, d\right) +F\left( b, c\right) +F\left( b, d\right) }{36} \\ &&-\frac{1}{6\left( b-a\right) }\int_{p_{1}a+(1-p_{1})b}^{b}\left[ F\left( x, c\right) +4F\left( x, \frac{c+d}{2}\right) +F\left( x, d\right) \right] \; ^{b}d_{p_{1, }q_{1}}x \\ &&-\frac{1}{6\left( d-c\right) }\int_{c}^{p_{2}d+(1-p_{2})c}\left[ F\left( a, y\right) +4F\left( \frac{a+b}{2}, y\right) +F\left( b, y\right) \right] \; _{c}d_{p_{2, }q_{2}}y \\ &&+\frac{1}{\left( b-a\right) \left( d-c\right) } \int_{p_{1}a+(1-p_{1})b}^{b}\int_{c}^{p_{2}d+(1-p_{2})c}F\left( x, y\right) \; ^{b}d_{p_{1, }q_{1}}x\; _{c}d_{p_{2, }q_{2}}y \end{eqnarray*}

    and

    \begin{equation*} \Lambda _{p_{1}, q_{1}}\left( t\right) = \left \{ \begin{array}{c} \left( q_{1}t-\frac{1}{6}\right) , \; \ \ t\in \left[ 0, \frac{1}{2}\right) , \\ \\ \left( q_{1}t-\frac{5}{6}\right) , \; \ t\in \left[ \frac{1}{2}, 1\right] , \end{array} \right. \end{equation*}
    \begin{equation*} \Lambda _{p_{2}, q_{2}}\left( s\right) = \left \{ \begin{array}{c} \left( q_{2}s-\frac{1}{6}\right) , \; \ s\in \left[ 0, \frac{1}{2}\right) , \\ \\ \left( q_{2}s-\frac{5}{6}\right) , \; \ s\in \left[ \frac{1}{2}, 1\right] . \end{array} \right. \end{equation*}

    Proof. The required inequality (6.2) may be obtained by applying the technique employed in the proof of Lemma 4.1 while taking into consideration the definition of \frac{_{c}^{\; b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} .

    Remark 6.5. If we take p_{1} = p_{2} = 1 in Lemma 6.2, then Lemma 6.2 reduces to [[33] Lemma 5].

    Remark 6.6. If we take p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-} in Lemma 6.2, then Lemma 6.2 reduces to [[6] Lemma 1].

    Theorem 6.4. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . Then we have following inequality provided that \left \vert \frac{ _{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{ ^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert is convex on \left[a, b\right] \times \left[c, d\right] .

    \begin{eqnarray*} &&\left \vert _{c}^{b}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ \left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} \right \vert \right. \end{eqnarray*}
    \begin{eqnarray*} &&+\left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert \\ &&+\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert \\ &&\left. +\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert \right] , \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1 .

    Remark 6.7. If we take p_{1} = p_{2} = 1 in Theorem 6.4, then Theorem 6.4 reduces to [[33] Theorem 13].

    Theorem 6.5. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p > 1 and \frac{1}{r} +\frac{1}{p} = 1 . Then we have following inequality.

    \begin{eqnarray*} &&\left \vert _{c}^{b}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left( \int_{0}^{1}\int_{0}^{1}\left \vert \Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \right \vert ^{r}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}} \\ &&\left[ \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. +\frac{\left[ 2\right] _{p_{2}, q_{2}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ &&+\frac{\left[ 2\right] _{p_{1}, q_{1}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \left. +\frac{\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2 \right] _{p_{2}, q_{2}}}\left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right] ^{ \frac{1}{p}}, \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Remark 6.8. If we take p_{1} = p_{2} = 1 in Theorem 6.5, then Theorem 6.5 reduces to [[33] Theorem 14].

    Theorem 6.6. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p\geq 1 . Then we have following inequality.

    \begin{eqnarray*} &&\left \vert _{c}^{b}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ A_{5}^{1-\frac{1}{p} }\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p}}\left( p_{2}, q_{2}\right) \right. \\ &&\times \Bigg \{ A_{1}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \\ && +A_{2}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \Bigg \} ^{\frac{1}{p}} \\ &&+A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left \{ A_{1}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \\ && +A_{2}\left( p_{1}, q_{1}\right)\left. \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left \{ A_{3}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{1}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \end{eqnarray*}
    \begin{eqnarray*} &&+A_{4}\left( p_{1}, q_{1}\right)\left. \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \left \{ A_{3}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right. \\ &&+A_{4}\left( p_{1}, q_{1}\right) \left. \left. \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{c}^{b}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{^{b}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \right \} ^{\frac{1}{p}}\right] \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Remark 6.9. If we take p_{1} = p_{2} = 1 in Theorem 6.6, then Theorem 6.6 reduces to [[33] Theorem 15].

    Lemma 6.3. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1}, q_{1})(p_{2}, q_{2}) -differentiable function. If the partial (p_{1}, q_{1})(p_{2}, q_{2}) -derivative \frac{ _{a, c}^{\; }\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{ _{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta . Then following identity holds for (p_{1}, q_{1})(p_{2}, q_{2}) -integrals.

    \begin{eqnarray*} &&_{a, c}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F) \\ & = &\left( b-a\right) \left( d-c\right) \int_{0}^{1}\int_{0}^{1}\Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \frac{ _{a, c}^{\; }\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( tb+\left( 1-t\right) a, sd+\left( 1-s\right) c\right) }{_{a}\partial _{p_{1, }q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} d_{p_{1}, q_{1}}t\; d_{p_{2}, q_{2}}s, \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1 ,

    \begin{eqnarray*} _{a, c}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F) & = &\frac{F\left( \frac{a+b }{2}, c\right) +F\left( \frac{a+b}{2}, d\right) +4F\left( \frac{a+b}{2}, \frac{ c+d}{2}\right) +F\left( a, \frac{c+d}{2}\right) +F\left( b, \frac{c+d}{2} \right) }{9} \\ &&+\frac{F\left( a, c\right) +F\left( a, d\right) +F\left( b, c\right) +F\left( b, d\right) }{36} \\ &&-\frac{1}{6\left( b-a\right) }\int_{a}^{p_{1}b+(1-p_{1})a}\left[ F\left( x, c\right) +4F\left( x, \frac{c+d}{2}\right) +F\left( x, d\right) \right] \; _{a}d_{p_{1, }q_{1}}x \\ &&-\frac{1}{6\left( d-c\right) }\int_{c}^{p_{2}d+(1-p_{2})c}\left[ F\left( a, y\right) +4F\left( \frac{a+b}{2}, y\right) +F\left( b, y\right) \right] \; _{c}d_{p_{2, }q_{2}}y \\ &&+\frac{1}{\left( b-a\right) \left( d-c\right) } \int_{a}^{p_{1}b+(1-p_{1})a}\int_{c}^{p_{2}d+(1-p_{2})c}F\left( x, y\right) \; _{a}d_{p_{1, }q_{1}}x\; _{c}d_{p_{2, }q_{2}}y \end{eqnarray*}

    and

    \begin{equation*} \Lambda _{p_{1}, q_{1}}\left( t\right) = \left \{ \begin{array}{c} \left( q_{1}t-\frac{1}{6}\right) , \; \ \ t\in \left[ 0, \frac{1}{2}\right) , \\ \\ \left( q_{1}t-\frac{5}{6}\right) , \; \ t\in \left[ \frac{1}{2}, 1\right] , \end{array} \right. \end{equation*}
    \begin{equation*} \Lambda _{p_{2}, q_{2}}\left( s\right) = \left \{ \begin{array}{c} \left( q_{2}s-\frac{1}{6}\right) , \; \ s\in \left[ 0, \frac{1}{2}\right) , \\ \\ \left( q_{2}s-\frac{5}{6}\right) , \; \ s\in \left[ \frac{1}{2}, 1\right] . \end{array} \right. \end{equation*}

    Proof. The required inequality (6.2) may be obtained by applying the technique employed in the proof of Lemma 4.1 while taking into consideration the definition of \frac{_{a, c}^{\; }\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} .

    Remark 6.10. If we take p_{1} = p_{2} = 1 and q_{1}, q_{2}\rightarrow 1^{-} in Lemma 6.3, then Lemma 6.3 reduces to [[6] Lemma 1].

    Theorem 6.7. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . Then we have following inequality provided that \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} \right \vert is convex on \left[a, b\right] \times \left[c, d\right] .

    \begin{eqnarray*} &&\left \vert _{a, c}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \Bigg[ \left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} \right \vert \\ &&+\left( A_{1}\left( p_{1}, q_{1}\right) +A_{3}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert \\ &&+\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{1}\left( p_{2}, q_{2}\right) +A_{3}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert \\ &&+\left( A_{2}\left( p_{1}, q_{1}\right) +A_{4}\left( p_{1}, q_{1}\right) \right) \left( A_{2}\left( p_{2}, q_{2}\right) +A_{4}\left( p_{2}, q_{2}\right) \right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert \Bigg] , \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1 .

    Theorem 6.8. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p > 1 and \frac{1}{r} +\frac{1}{p} = 1 . Then we have following inequality.

    \begin{eqnarray*} &&\left \vert _{a, c}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left( \int_{0}^{1}\int_{0}^{1}\left \vert \Lambda _{p_{1}, q_{1}}\left( t\right) \Lambda _{p_{2}, q_{2}}\left( s\right) \right \vert ^{r}d_{p_{1}, q_{1}}td_{p_{2}, q_{2}}s\right) ^{\frac{1}{r}} \\ &&\left[ \frac{1}{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right. +\frac{\left[ 2\right] _{p_{2}, q_{2}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \\ &&+\frac{\left[ 2\right] _{p_{1}, q_{1}}-1}{\left[ 2\right] _{p_{1}, q_{1}} \left[ 2\right] _{p_{2}, q_{2}}}\left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} \left. +\frac{\left( \left[ 2\right] _{p_{1}, q_{1}}-1\right) \left( \left[ 2\right] _{p_{2}, q_{2}}-1\right) }{\left[ 2\right] _{p_{1}, q_{1}}\left[ 2 \right] _{p_{2}, q_{2}}}\left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right] ^{ \frac{1}{p}}, \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    Theorem 6.9. Let F:\Delta \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} be a twice partially (p_{1, }q_{1})(p_{2}, q_{2}) -differentiable function on \Delta ^{\circ } such that partial (p_{1, }q_{1})(p_{2}, q_{2}) -derivative \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s} is continuous and integrable on \left[a, b\right] \times \left[c, d\right] \subseteq \Delta ^{\circ } . If \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left(t, s\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p} is convex on \left[a, b\right] \times \left[c, d\right] for some \; p\geq 1 . Then we have following inequality.

    \begin{eqnarray*} &&\left \vert _{a, c}\mathcal{I}_{(p_{1}, q_{1}), (p_{2}, \; q_{2})}(F)\right \vert \\ &\leq &\left( b-a\right) \left( d-c\right) \left[ A_{5}^{1-\frac{1}{p} }\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p}}\left( p_{2}, q_{2}\right) \right. \\ &&\times\Bigg \{ A_{1}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \\ &&+A_{2}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \Bigg \} ^{\frac{1}{p}} \\ &&+A_{5}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times\Bigg\{ A_{1}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \\ &&+A_{2}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \Bigg \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{5}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times \Bigg \{ A_{3}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{1}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \\ && +A_{4}\left( p_{1}, q_{1}\right) \left( A_{1}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{2}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \Bigg \} ^{\frac{1}{p}} \\ &&+A_{6}^{1-\frac{1}{p}}\left( p_{1}, q_{1}\right) A_{6}^{1-\frac{1}{p} }\left( p_{2}, q_{2}\right) \\ &&\times\Bigg\{ A_{3}\left( p_{1}, q_{1}\right) \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( b, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \\ && +A_{4}\left( p_{1}, q_{1}\right) \left. \left( A_{3}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, d\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}+A_{4}\left( p_{2}, q_{2}\right) \left \vert \frac{_{a, c}\partial _{(p_{1}, q_{1}), (p_{2}, q_{2})}^{2}F\left( a, c\right) }{_{a}\partial _{p_{1}, q_{1}}t\; _{c}\partial _{p_{2}, q_{2}}s}\right \vert ^{p}\right) \Bigg\} ^{\frac{1}{p}}\right] \end{eqnarray*}

    where 0 < q_{1} < p_{1}\leq 1, 0 < q_{2} < p_{2}\leq 1.

    In this work, we proved several Simpson's type inequalities using mixed post-quantum partial derivatives and integrals in the context of (p, q) -calculus. We also demonstrated that the findings of this paper are refinements of comparable findings in the literature. Quantum information theory, an interdisciplinary topic that incorporates computer science, information theory, philosophy, cryptography, and entropy, can benefit from the findings of this study. It is a new and intriguing problem that upcoming researchers can use to establish similar inequalities for various types of convexity in their future work.

    This research was funded by King Mongkut's University of Technology North Bangkok. Contract no. KMUTNB-63-KNOW-18.

    The authors declare no conflict of interest.



    [1] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. doi: 10.1155/S102558340000031X. doi: 10.1155/S102558340000031X
    [2] M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res Rep Coll., 2 (2009).
    [3] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, RGMIA Res. Rep. Coll., 13 (2010).
    [4] S. Erden, S. Iftikhar, M. R. Delavar, P. Kumam, P. Thounthong, W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, RACSAM, 114 (2020), 1–15. doi: 10.1007/s13398-020-00841-3. doi: 10.1007/s13398-020-00841-3
    [5] S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. doi: 10.1186/s13662-020-02637-6. doi: 10.1186/s13662-020-02637-6
    [6] M. E. Özdemir, A. O. Akdemir, H. Kavurmaci, M. Avci, On the Simpson's inequality for co-ordinated convex functions, 2010, arXiv preprint arXiv: 1101.0075.
    [7] T. A. Ernst, Comprehensive Treatment of q -Calculus, Springer, Basel, 2012.
    [8] V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002.
    [9] F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum information, computation and cryptography: An introductory survey of theory, technology and experiments, Springer Science and Business Media, 2010.
    [10] A. Bokulich, G. Jaeger, Philosophy of quantum information theory and entaglement, Cambridge Uniersity Press, 2010.
    [11] T. A. Ernst, The History of q-Calculus and New Method, Sweden: Department of Mathematics, Uppsala University, 2000.
    [12] F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [13] W. Al-Salam, Some fractional q -integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469. doi: 10.1017/S0013091500011469
    [14] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 1–19. doi: 10.1186/1687-1847-2013-282. doi: 10.1186/1687-1847-2013-282
    [15] S. Bermudo, P. Kórus, J. N. Valdés, On q -Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung. 162 (2020), 364–374. doi: 10.1007/s10474-020-01025-6. doi: 10.1007/s10474-020-01025-6
    [16] P. N. Sadjang, On the fundamental theorem of (p, q) -calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018), 1–21.
    [17] J. Soontharanon, T. Sitthiwirattham, On Fractional (p, q)-Calculus, Adv. Differ. Equ., 2020 (2020), 1–18. doi: 10.1186/s13662-020-2512-7. doi: 10.1186/s13662-020-2512-7
    [18] M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1–12.
    [19] Y-M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right \left(p, q\right) -derivatives and definite integrals, Adv. Differ. Equ., 2020 (2020), 1–15. doi: 10.1186/s13662-020-03094-x. doi: 10.1186/s13662-020-03094-x
    [20] M. A. Ali, H. Budak, M. Abbas, Y.-M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second q^{\pi _{2}}-derivatives, Adv. Differ. Equ., 2021 (2021), 1–12. doi: 10.1186/s13662-020-03163-1. doi: 10.1186/s13662-020-03163-1
    [21] M. A. Ali, N. Alp, H. Budak, Y-M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. doi: 10.1515/math-2021-0015. doi: 10.1515/math-2021-0015
    [22] N. Alp, M. Z. Sarikaya, M. Kunt, İ. İșcan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud University–Science, 30 (2018), 193–203. doi: 10.1016/j.phycom.2018.09.002. doi: 10.1016/j.phycom.2018.09.002
    [23] N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356.
    [24] H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. doi: 10.22199/issn.0717-6279-2021-01-0013. doi: 10.22199/issn.0717-6279-2021-01-0013
    [25] H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6. doi: 10.1007/s10957-020-01726-6
    [26] S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlapon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632. doi: 10.3390/math7070632
    [27] W. Liu, Z. Hefeng, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2016), 501–522. doi: 10.11948/2017031. doi: 10.11948/2017031
    [28] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. doi: 10.1016/j.amc.2014.11.090. doi: 10.1016/j.amc.2014.11.090
    [29] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. doi: 10.1016/j.amc.2015.07.078. doi: 10.1016/j.amc.2015.07.078
    [30] E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via \eta -quasiconvexity, Adv. Differ. Equ., 2019 (2019), 1–12. doi: 10.1186/s13662-019-2358-z. doi: 10.1186/s13662-019-2358-z
    [31] M. A. Khan, M. Noor, E. R. Nwaeze, Y-M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ-NY, 2020 (2020), 1–20. doi: 10.1186/s13662-020-02559-3. doi: 10.1186/s13662-020-02559-3
    [32] H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. doi: 10.1002/mma.6742. doi: 10.1002/mma.6742
    [33] M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048. doi: 10.1002/mma.7048
    [34] M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y-M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 1–21. doi: 10.1186/s13662-021-03226-x. doi: 10.1186/s13662-021-03226-x
    [35] M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some New Newton's Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476. doi: 10.3390/sym12091476
    [36] M. A. Ali, Y.-M. Chu, H. Budak, A. Akkurt, H.Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 1–26. doi: 10.1186/s13662-020-03195-7. doi: 10.1186/s13662-020-03195-7
    [37] M. A. Ali, H. Budak, A. Akkurt, Y-M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020. doi: 10.1515/math-2021-0020
    [38] H. Budak, M. A. Ali, T. Tunç, Quantum Ostrowski-type integral inequalities for functions of two variables, Math. Meth. Appl. Sci., 44 (2021), 5857–5872. doi: 10.1002/mma.7153. doi: 10.1002/mma.7153
    [39] H. Budak, M. A. Ali, N. Alp, Y.-M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., 2021, in press.
    [40] M. Kunt, İ. İșcan, N. Alp, M. Z. Sarikaya, \left(p, q\right) -Hermite-Hadamard inequalities and \left(p, q\right) - estimates for midpoint inequalities via convex quasi-convex functions, Rev. R. Acad. Cienc. Exactas F s. Nat. Ser. A Mat. RACSAM, 112 (2018), 969–992.
    [41] M. A. Latif, M. Kunt, S. S. Dragomir, İ. İș can, Post-quantum trapezoid type inequalities, AIMS Mathematics, 5 (2020), 4011–4026. doi: 10.3934/math.2020258. doi: 10.3934/math.2020258
    [42] M. A. Latif, S. S. Dragomir, E. Momoniat, Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud University–Science, 29 (2017), 263–273.
    [43] M. Vivas-Cortez, M. A. Ali, H. Kalsoom, H. Budak, M. Z. Sarikaya, H. Benish, Trapezoidal type inequalities for co-ordinated convex functions via quantum calculus, Math. Probl. Eng., 2021, in press.
    [44] M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some New Hermite–Hadamard and Related Inequalities for Convex Functions via \left(p, q\right) -Integral, Entropy, 23 (2021), 828. doi: 10.3390/e23070828. doi: 10.3390/e23070828
    [45] H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, et al., Post quantum inequalities of Hermite-Hadamard type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 443. doi: 10.3390/sym12030443. doi: 10.3390/sym12030443
    [46] F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via \left(p, q\right) -calculus, Mathematics, 9 (2021), 698. doi: 10.3390/math9070698. doi: 10.3390/math9070698
    [47] M. A. Ali, H. Budak, I. B. Sial, Post-quantum Ostrowski type integral inequalities for functions of two variables, Authorea Preprints, 2021.
  • This article has been cited by:

    1. Fongchan Wannalookkhee, Kamsing Nonlaopon, Mehmet Zeki Sarikaya, Hüseyin Budak, Muhammad Aamir Ali, On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-02917-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1899) PDF downloads(73) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog