Research article

Square-mean asymptotically almost periodic solutions of second order nonautonomous stochastic evolution equations

  • Received: 10 July 2020 Accepted: 01 March 2021 Published: 08 March 2021
  • MSC : 60H15, 47D99

  • In this paper, we study the existence of square-mean asymptotically almost periodic mild solutions for a class of second order nonautonomous stochastic evolution equations in Hilbert spaces. By using the principle of Banach contractive mapping principle, the existence and uniqueness of square-mean asymptotically almost periodic mild solutions of the equation are obtained. To illustrate the abstract result, a concrete example is given.

    Citation: Jinghuai Liu, Litao Zhang. Square-mean asymptotically almost periodic solutions of second order nonautonomous stochastic evolution equations[J]. AIMS Mathematics, 2021, 6(5): 5040-5052. doi: 10.3934/math.2021298

    Related Papers:

  • In this paper, we study the existence of square-mean asymptotically almost periodic mild solutions for a class of second order nonautonomous stochastic evolution equations in Hilbert spaces. By using the principle of Banach contractive mapping principle, the existence and uniqueness of square-mean asymptotically almost periodic mild solutions of the equation are obtained. To illustrate the abstract result, a concrete example is given.



    加载中


    [1] H. Bohr, Almost periodic functions, New York: Chelsea Publishing Company, 1947.
    [2] S. Zaidman, Almost-periodic functions in abstract spaces, Pitman (Advanced Publishing Program), Boston, MA, 1985.
    [3] E. Hernández, M. L. Pelicer, Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations, Appl. Math. Lett., 18 (2005), 1265-1272. doi: 10.1016/j.aml.2005.02.015
    [4] T. Diagana, H. Henriquez, E. Hernández, Asymptotically almost periodic solutions to some classes of second-order functional differential equations, Differ. Integral Equ., 21 (2008), 575-600.
    [5] P. Bezandry, T. Diagana, Existence of almost periodic solutions to some stochastic differential equations, Appl. Anal., 86 (2007), 819-827. doi: 10.1080/00036810701397788
    [6] P. Bezandry, T. Diagan, Almost periodic stochastic processes, Springer Science and Business Media LLC, 2011.
    [7] T. Diagan, Almost automorphic type and almost periodic type functions in abstract spaces, Springer International Publishing Switzerland, 2013.
    [8] Y. Chang, R. Ma, Z. Zhao, Almost periodic solutions to a stochastic differential equation in Hilbert spaces, Results Math., 63 (2013), 435-449. doi: 10.1007/s00025-011-0207-9
    [9] K. X. Li, Square-mean almost periodic solutions to some stochastic evolution equations, Acta. Math. Sin., English Ser., 30 (2014), 881-898. doi: 10.1007/s10114-013-1109-4
    [10] J. Cao, Z. Huang, Asymptotic almost periodicity of stochastic evolution equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 2295-2332. doi: 10.1007/s40840-018-0604-2
    [11] C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Math., 5 (2020), 3378-3390. doi: 10.3934/math.2020218
    [12] C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholsons blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), 1-18. doi: 10.1186/s13660-019-2265-6
    [13] C. Huang, J. Wang, L. Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, Electron. J. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [14] J. Cao, Q. Yang, Z. Huang, Q. Liu, Asymptotically almost periodic solutions of stochastic functional differential equations, Appl. Math. Comput., 218 (2011), 1499-1511.
    [15] A. Liu, Y. Liu, Q. Liu, Asymptotically almost periodic solutions for a class of stochastic functional differential equations, Abstr. Appl. Anal., 2014 (2014), 353-370.
    [16] M. A. McKibben, Second-order damped functional stochastic evolution equations in Hilbert space, Dyn. Syst. Appl., 12 (2003), 467-487.
    [17] M. A. McKibben, Second-order neutral stochastic evolution equations with heredity, J. Appl. Math. Stoch. Anal., 2004 (2004), 177-192. doi: 10.1155/S1048953304309020
    [18] M. A. McKibben, M. Webster, Abstract functional second-order stochastic evolution equations with applications, Afrika Mat., 28 (2017), 755-780. doi: 10.1007/s13370-017-0480-1
    [19] V. Vijayakumar, Approximate controllability for a class of second-order stochastic evolution inclusions of Clarkes subdifferential type, Results Math., 73 (2018), 1-23. doi: 10.1007/s00025-018-0773-1
    [20] P. Balasubramaniam, J. Park, Nonlocal Cauchy problem for second order stochastic evolution equations in Hilbert spaces, Dyn. Syst. Appl., 16 (2007), 713-728.
    [21] H. Huang, Z. Wu, L. Hu, Z. Wei, L. Wang, Existence and controllability of second-order neutral impulsive stochastic evolution integrodifferential equations with state-dependent delay, J. Fixed Point Theory Appl., 20 (2018), 1-27. doi: 10.1007/s11784-018-0489-6
    [22] R. Dhayal, M. Malik, S. Abbas, A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Method. Appl. Sci., 43 (2020), 4107-4124.
    [23] H. R. Henríquez, Existence of solutions of non-autonomous second order functional differential equations with infinite delay, Nonlinear Anal., 74 (2011), 3333-3352. doi: 10.1016/j.na.2011.02.010
    [24] M. Kozak, A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta Math., 32 (1995), 275-289.
    [25] H. R. Henríquez, V. Poblete, J. C. Pozo, Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., 412 (2014), 1064-1083. doi: 10.1016/j.jmaa.2013.10.086
    [26] Y. Ren, T. Hou, R. Sakthivel, X. Cheng, A note on the second-order non-autonomous neutral stochastic evolution equations with infinite delay under Caratheodory conditions, Appl. Math. Comput., 232 (2014), 658-665.
    [27] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, UK: Cambridge Univ. Press, 1992.
    [28] A. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl., 90 (1982), 12-44. doi: 10.1016/0022-247X(82)90041-5
    [29] B. Øksendal, Stochastic differential equations: an introduction with applications, 6Eds., Berlin: Springer-Verlag, 2003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1995) PDF downloads(185) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog