Research article

On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space

  • Received: 05 January 2021 Accepted: 18 February 2021 Published: 24 February 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this paper, we propose a new family of interval valued ($ \mathrm{IV} $) convex functions termed as generalized modified $ (p, h) $-convex $ \mathrm{IV} $ functions. We obtain the counterpart of Hermite-Hadamard $ H\cdot H $ inequality by extending the $ \mathrm{IV} $ fractional integral to the $ \mathrm{IV} \; \psi_{k} $-Riemann-Liouville ($ \psi_{k}-RL $) fractional integrals. Also, several inequalities using extended operations on the newly defined class of convex $ \mathrm{IV} $ functions are given.

    Citation: Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed. On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space[J]. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273

    Related Papers:

  • In this paper, we propose a new family of interval valued ($ \mathrm{IV} $) convex functions termed as generalized modified $ (p, h) $-convex $ \mathrm{IV} $ functions. We obtain the counterpart of Hermite-Hadamard $ H\cdot H $ inequality by extending the $ \mathrm{IV} $ fractional integral to the $ \mathrm{IV} \; \psi_{k} $-Riemann-Liouville ($ \psi_{k}-RL $) fractional integrals. Also, several inequalities using extended operations on the newly defined class of convex $ \mathrm{IV} $ functions are given.



    加载中


    [1] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Science Direct Working Paper, 2003. Available from: https://ssrn.com/abstract=3158351.
    [2] J. J. Ruel, M. P. Ayres, Jensen's inequality predicts effects of environmental variations, Trends Ecol. Evol., 14 (1999), 361–366. doi: 10.1016/S0169-5347(99)01664-X
    [3] M. Grinalatt, J. T. Linnainmaa, Jensen's Inequality, Parameter Uncertainty, and Multiperiod Investment, Chicago Booth Research Paper, CRSP Working Paper, 2010. Available from: https://ssrn.com/abstract=1629189.
    [4] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. doi: 10.1515/math-2020-0038
    [5] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equations, 2020 (2020), 1–22. doi: 10.1186/s13662-019-2438-0
    [6] P. O. Mohammed, I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-Liouville fractional Integrals, Symmetry, 12 (2020), 610. doi: 10.3390/sym12040610
    [7] T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, AIMS Math., 5 (2020), 7316–7331. doi: 10.3934/math.2020468
    [8] P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. doi: 10.3390/sym12091485
    [9] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., (2020), 1–18. Available from: https://doi.org/10.1002/mma.6188.
    [10] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alexandria Eng. J., 59 (2020), 2975–2984. doi: 10.1016/j.aej.2020.03.039
    [11] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595
    [12] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740
    [13] P. O. Mohammed, M. Vivas-Cortez, T. Abdeljawad, Y. Rangel-Oliveros, Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications, AIMS Math., 5 (2020), 7316–7331. doi: 10.3934/math.2020468
    [14] R. E. Moore, Interval Analysis, Englewood Cliffs: Prentice-Hall, 1996.
    [15] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE Trans. Neural Networks, 20 (2009), 638–653. doi: 10.1109/TNN.2008.2011267
    [16] T. M. Costa, H. Bouwmeester, W. A. Lodwick, C. Lavor, Calculating the possible conformations arising from uncertainty in the molecular distance geometry problem using constraint interval analysis, Inf. Sci., 415 (2017), 41–52.
    [17] R. Osuna-Gomez, Y. Chalco-Cano, B. Hernandez-Jimenezz, G. Ruiz-Garzon, Optimality conditions for generalized differentiable interval-valued functions, Inf. Sci., 321 (2015), 136–146. doi: 10.1016/j.ins.2015.05.039
    [18] Y. Chalco-Cano, A. Flores-Franulic, H. Roman-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012).
    [19] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. doi: 10.1007/s00500-014-1483-6
    [20] H. Roman-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306–1318. doi: 10.1007/s40314-016-0396-7
    [21] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47. doi: 10.1016/j.fss.2017.02.001
    [22] A. Flores-Franulic, Y. Chalco-Cano, H. R. Flores, An Ostrowski type inequality for interval-valued functions, (IFSA/NAFIPS), IEEE, (2013), 1459–1462.
    [23] E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math., 32 (1997), 332–337. doi: 10.1007/BF03322144
    [24] F. C. Mitroi, K. Nikodem, S. Wasowicz, Hermite-Hadamard inequalities for convex set-valued functions, Demonstratio Math., 46 (2013), 655–662.
    [25] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately $h$-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 222. doi: 10.1186/s13660-020-02488-5
    [26] Z. B. Li, M. S. Zahoor, H. Akhtar, Hermite-Hadamard and fractional integral inequalities for interval-valued generalized $p$-convex function, J. Math., 2020 (2020), 4606439.
    [27] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 63–85. doi: 10.1016/j.fss.2014.04.005
    [28] E. Kaucher, Über Eigenschaften und anwendungsmöglichkeiten der erweiterten intervallrechnung und des hyperbolischen fastkörpers über R, In: R. Albrecht, U. Kulisch, Grundlagen der Computer-Arithmetik, Computing Supplementum, Vienna: Springer, 1 (1977), 81–94.
    [29] E. Kaucher, Interval analysis in the extended interval space IR, In: G. Alefeld, R. D. Grigorieff, Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Computing Supplementum, Vienna: Springer, 2 (1980), 33–49.
    [30] N. S. Dimitrova, S. M. Markov, E. D. Popova, Extended interval arithmetics: new results and applications, In: L. Atanassova, J. Herzberger, Computer Arithmetic and Enclosure Methods, Elsevier Sci. Publishers B. V., (1992), 225–232.
    [31] A. Dinghas, Zum minkowskischen integralbegriff abgeschlossener mengen, Math. Z., 66 (1956), 173–188. doi: 10.1007/BF01186606
    [32] B. Piatek, On the Riemann integral of set-valued functions, Zesz. Nauk. Mat. Stosow/Politech Saska, 2 (2012), 5–18.
    [33] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 2009.
    [34] J. P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Berlin: Springer, 2012.
    [35] X. Liu, G. Ye, D. Zhao, W. Liu, Fractional Hermite–-Hadamard type inequalities for interval-valued functions, J. Inequalities Appl., 2019 (2019), 266. doi: 10.1186/s13660-019-2217-1
    [36] S. Varošanec, On $h$–convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
    [37] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequalities Appl., 2018 (2018), 302. doi: 10.1186/s13660-018-1896-3
    [38] K. Nikodem, On midpoint convex set-valued functions, Aequationes Math., 33 (1987), 46–56. doi: 10.1007/BF01836150
    [39] H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 2019. Available from: https://doi.org/10.1090/proc/14741.
    [40] F. Shi, G. Ye, D. Zhao, W. Liu, Some fractional Hermite-Hadamard-type inequalities for interval-valued coordinated functions, Adv. Differ. Equations, 2021 (2021), 32. doi: 10.1186/s13662-020-03200-z
    [41] H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals, Math. Methods Appl. Sci., 44 (2021), 104–123. doi: 10.1002/mma.6712
    [42] Z. Sha, G. Ye, D. Zhao, W. Liu, On interval-valued $\mathbb{K}$-Riemann integral and Hermite-Hadamard type inequalities, AIMS Math., 6 (2021), 1276–1295. doi: 10.3934/math.2021079
    [43] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
    [44] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266
    [45] T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. doi: 10.1016/j.cam.2018.07.018
    [46] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865.
    [47] M. Z. Sarikaya, M. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89.
    [48] S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2012), 89–94.
    [49] T. Tunç, Hermite-Hadamard type inequalities for interval-valued fractional integrals with respect to another function, 2020. Available from: https://www.researchgate.net/publication/338834107.
    [50] K. S. Zhang, J. P. Wan, $P$-convex functions and their properties, Pure Appl. Math., 1 (2007), 130–133.
    [51] M. E. Gordji, M. Rostamian, M. Delasen, On $\phi$–convex functions, J. Math. Inequal., 10 (2016), 173–183.
    [52] C. Y. Jung, M. S. Saleem, W. Nazeer, M. S. Zahoor, A. Latif, S. M. Kang, Unification of generalized and $p$-convexity, J. Funct. Spaces, 23 (2020), 1–6.
    [53] M. A. Noor, K. I. Noor, M. U. Awan, Hermite-Hadamard inequalities for modified $h$-convex functions, Transylv. J. Math. Mech., 6 (2014), 171–180.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2313) PDF downloads(145) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog