Research article

E-Bayesian estimation of Burr Type XII model based on adaptive Type-Ⅱ progressive hybrid censored data

  • Received: 27 September 2020 Accepted: 03 February 2021 Published: 07 February 2021
  • MSC : 62F15, 62F30, 62F86

  • In this paper, we obtain the E-Bayesian estimation of the parameter and the reliability function of the Burr type-XII distribution under adaptive progressive Type-Ⅱ censoring scheme. The E-Bayesian estimation is investigated using three different prior distributions based on squared error and LINEX loss functions. The properties of the E-Bayesian estimation and the E-posterior risk under squared error and LINEX loss functions are also discussed. An extensive simulation study is conducted to compare the behaviour of the E-Bayesian estimation with the corresponding Bayes and maximum likelihood estimators. We analyze one real data set to show the applicability of the different estimators in practice.

    Citation: Hassan Okasha, Mazen Nassar, Saeed A. Dobbah. E-Bayesian estimation of Burr Type XII model based on adaptive Type-Ⅱ progressive hybrid censored data[J]. AIMS Mathematics, 2021, 6(4): 4173-4196. doi: 10.3934/math.2021247

    Related Papers:

  • In this paper, we obtain the E-Bayesian estimation of the parameter and the reliability function of the Burr type-XII distribution under adaptive progressive Type-Ⅱ censoring scheme. The E-Bayesian estimation is investigated using three different prior distributions based on squared error and LINEX loss functions. The properties of the E-Bayesian estimation and the E-posterior risk under squared error and LINEX loss functions are also discussed. An extensive simulation study is conducted to compare the behaviour of the E-Bayesian estimation with the corresponding Bayes and maximum likelihood estimators. We analyze one real data set to show the applicability of the different estimators in practice.



    加载中


    [1] N. Balakrishnan, D. Kundu, Hybrid censoring: models, inferential results and applications, Comput. Stat. Data Anal., 57 (2013), 166–209. doi: 10.1016/j.csda.2012.03.025
    [2] N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods Appl., Boston: Birkhäuser, 2000.
    [3] N. Balakrishnan, Progressive censoring methodology: An appraisal (with discussions), Test, 16 (2007), 211–296. doi: 10.1007/s11749-007-0061-y
    [4] D. Kundu, A. Joarder, Analysis of type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. doi: 10.1016/j.csda.2005.05.002
    [5] H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressively censoring scheme, Naval Res. Logistics, 56 (2009), 687–698. doi: 10.1002/nav.20371
    [6] C. T. Lin, H. K. T. Ng, P. S. Chan, Statistical inference of type-Ⅱ progressively hybrid censored data with Weibull lifetimes, Comm. Stat. Theory Methods, 56 (2009), 1710–1729.
    [7] F. Hemmati, S. Khorram, Statistical analysis of the log-normal distribution under type-Ⅱ progressive hybrid censoring schemes, Comm. Stat. Simul. Comput., 42 (2013), 52–75. doi: 10.1080/03610918.2011.633195
    [8] M. A. W. Mahmoud, A. A. Soliman, A. H. Abd Ellah, R. M. El-Sagheer, Estimation of generalized Pareto under an adaptive type-Ⅱ progressive censoring, Intell. Inf. Manage., 5 (2013), 73–83.
    [9] A. A. Ismail, Inference for a step-stress partially accelerated life test model with an adaptive Type-Ⅱ progressively hybrid censored data from Weibull distribution, J. Comput. Appl. Math., 260 (2014), 553–542.
    [10] M. M. AL Sobhi, A. A. Soliman, Estimation for the exponentiated Weibull model with adaptive Type-Ⅱ progressive censored schemes, Appl. Math. Modell., 40 (2015), 1180–192.
    [11] M. Nassar, O. E. Abo-Kasem, Estimation of the inverse Weibull parameters under adaptive type-Ⅱ progressive hybrid censoring scheme, J. Comput. Appl. Math., 315 (2017), 228-239. doi: 10.1016/j.cam.2016.11.012
    [12] M. Nassar, O. Abo-Kasem, C. Zhang, S. Dey, Analysis of Weibull Distribution Under Adaptive Type-Ⅱ Progressive Hybrid Censoring Scheme, J. Indian Society Probab. Stat., 19 (2018), 25–65. doi: 10.1007/s41096-018-0032-5
    [13] I. W. Burr, Cumulative frequency functions, Ann. Math. Stat., 13 (1942), 215–232. doi: 10.1214/aoms/1177731607
    [14] I. G. Evans, A. S. Ragab, Bayesian inferences given a type 2 censored sample from Burr distribution, Comm. Stat. Theory Methods, 12 (1983), 1569–1580. doi: 10.1080/03610928308828551
    [15] A. S. Papadopoulos, The Burr distribution as a failure model from a Bayesian approach, IEEE Trans. Reliab., R-27 (1978), 369–371. doi: 10.1109/TR.1978.5220427
    [16] M. A. M. Ali Mousa, Z. F. Jaheen, Statistical inference for the Burr model based on progressively censored data, Comput. Math. Appl., 43 (2002), 1441–1449. doi: 10.1016/S0898-1221(02)00110-4
    [17] Z. F. Jaheen, H. M. Okasha, E-Bayesian estimation for the Burr type XII model based on type-2 censoring, Appl. Math. Modell., 35 (2011), 4730-4737. doi: 10.1016/j.apm.2011.03.055
    [18] P. Hanieh, S. Abdolreza, Estimation and prediction for a unified hybrid-censored Burr Type XII distribution, J. Stat. Comput. Simul., 86 (2016), 55–73. doi: 10.1080/00949655.2014.993985
    [19] M. A. Montaser, Estimation for unknown parameters of the Burr Type-XII distribution based on an adaptive progressive Type-Ⅱ censoring scheme, J. Math. Stat., 12 (2017), 119–126.
    [20] J. Jia, Z. Yan, X. Peng, Parameters estimation of Burr-XII distribution under first failure progressively unified hybrid censoring schemes, Stat. Anal. Data Mining: ASA Data Sci. J., 11 (2018), 271-281. doi: 10.1002/sam.11391
    [21] B. R. Arabi, A. Noori, Estimation based on progressively type-Ⅰ hybrid censored data from the Burr XII distribution, Stat. Papers., 60 (2019), 411-–453.
    [22] M. Han, E-Bayesian estimation and hierarchical Bayesian estimation of failure rate, Appl. Math. Modell., 33 (2009), 1915–1922. doi: 10.1016/j.apm.2008.03.019
    [23] M. Han, E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples, Comm. Stat. Theory Methods, 49 (2020), 1858–1872. doi: 10.1080/03610926.2019.1565837
    [24] H. M. Okasha, J. Wang, E-Bayesian estimation for the geometric model based on record statistics, Appl. Math. Modell., 40 (2016), 658–670. doi: 10.1016/j.apm.2015.05.004
    [25] R. Azimi, F. Yaghmaei, B. Fasihi, E-Bayesian estimation based on generalized half Logistic progressive type-Ⅱ censored data, Int. J. Adv. Math. Sci., 1 (2013), 56–63.
    [26] H. M. Okasha, E-Bayesian Estimation of System Reliability with Weibull Distribution Based on Type-2 Censoring, J. Adv. Res. Sci. Comput., 4 (2012), 33–45.
    [27] H. M. Okasha, E-Bayesian estimation for the Lomax distribution based on type-Ⅱ censored data, J. Egypt. Math. Soc., 22 (2014), 489–495. doi: 10.1016/j.joems.2013.12.009
    [28] H. M. Okasha, Estimation for the Exponential Model Based on Record Statistics, J. Stat. Theory Appl., 18 (2019), 236-243.
    [29] R. Abdalla, L. Junping, E-Bayesian estimation for Burr-X distribution based on generalized type-Ⅰ hybrid censoring scheme, Am. J. Math. Manage. Sci., 39 (2020), 41–55.
    [30] M. Han, The structure of hierarchical prior distribution and its applications, Chin. Oper. Res. Manage. Sci., 6 (1997), 31–40.
    [31] I. S. Gradshteyn, Tables of Integrals, Series and Products (Corrected and Enlarged Edition), Academic Press: San Diego, CA, USA., 1980.
    [32] N. Balakrishnan, R. A. Sandhu A simple simulational algorithm for generating progressive Type-Ⅱ censored samples}, Am. Stat., 49 (1995), 229-230.
    [33] J. F. Lawless, Statistical Models and Methods for Lifetime Data (2Eds), New York, Wiley, 2003.
    [34] W. J. Zimmer, J. B. Keats, F. K. Wang, The Burr XII distribution in reliability analysis, J. Qual. Technol., 30 (1998), 386–394. doi: 10.1080/00224065.1998.11979874
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2429) PDF downloads(192) Cited by(11)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog