We will call $ U\in B(X) $ as an operator of class $ \mathcal{A}_k $ if for some integer $ k $, the following inequality is satisfied:
$ \vert U^{k+1}\vert^{\frac{2}{k+1}}\geq \vert U\vert^{2}. $
In the present article, some basic spectral properties of this class are given, also the asymmetric Putnam-Fuglede theorem and the range kernel orthogonality for class $ \mathcal{A}_k $ operators are proved.
Citation: Ahmed Bachir, Nawal Ali Sayyaf, Khursheed J. Ansari, Khalid Ouarghi. Putnam-Fuglede type theorem for class $ \mathcal{A}_k $ operators[J]. AIMS Mathematics, 2021, 6(4): 4073-4082. doi: 10.3934/math.2021241
We will call $ U\in B(X) $ as an operator of class $ \mathcal{A}_k $ if for some integer $ k $, the following inequality is satisfied:
$ \vert U^{k+1}\vert^{\frac{2}{k+1}}\geq \vert U\vert^{2}. $
In the present article, some basic spectral properties of this class are given, also the asymmetric Putnam-Fuglede theorem and the range kernel orthogonality for class $ \mathcal{A}_k $ operators are proved.
[1] | A. Bachir, Generalized Derivation, SUT J. Math., 4 (2004), 111–116. |
[2] | A. Bachir, F. Lombarkia, Fuglede-Putnam's theorem for w-hyponormal operators, Math. Inequal. Appl., 15 (2012), 777–786. |
[3] | A. Bachir, An extension of Fuglede-Putnam theorem for certain posinormal operators, Int. J. Contemp. Math. Sci., 8 (2013), 827–832. doi: 10.12988/ijcms.2013.3452 |
[4] | F. Başar, Summability theory and its Applications, Bentham Science Publishers, Istanbul, 2012. |
[5] | S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111–114. |
[6] | S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc., 71 (1978), 113–114. doi: 10.1090/S0002-9939-1978-0487554-2 |
[7] | A. Brown, C. Percy, Spectra of tensor products of operators, Proc. Amer. Math. Soc., 17 (1966), 162–166. doi: 10.1090/S0002-9939-1966-0188786-5 |
[8] | J. B. Conway, A Course in Functional Analysis, 2Eds., Springer, New York, 1990. |
[9] | J. C. Hou, On tensor Products of Operators, Acta Math. Sin., 91 (1993), 195–202. |
[10] | E. Dündar, F. Başar, On the fine spectrum of the upper triangle double band matrix $\vartriangle^+$ on the sequence space $c_0$, Math. Commun., 18 (2013), 337–348. |
[11] | N. Jayanti, New Classes of Operators Satisfying Weyl's and Weyl Type Theorems, Ph. D., Covernemnt Arts College, Coimbatore, India, 2013. |
[12] | R. L. Moore, D. D. Rogers, T. T. Trent, A note on intertwining M -hyponormal operators, Proc. Amer. Math. Soc., 83 (1981), 514–516. |
[13] | S. Mecheri, A generalization of Fuglede-Putnam theorem, J. Pure Math., 21 (2004), 31–38. |
[14] | S. Mecheri, A. Uchiyama, An extension of the Fuglede-Putnam's theorem to class $\mathcal{A}$ operators, Math. Inequal. Appl., 13 (2010), 57–61. |
[15] | M. Mursaleen, F. Başar, Sequence Space, Topis in Modern Summability Theory, CRC Press, Taylor and Francis Group, Serie: Mathematics and Applications, Boca Raton, London, New York, 2020. |
[16] | S. Panayappan, N. Jayanthi, Weyl and Weyl type theorems for class $\mathcal{A}^*_k$ and quasi class $\mathcal{A}_k^*$ operators, Int. J. Math. Anal. (Russia), 7 (2013), 683–698. doi: 10.12988/ijma.2013.13066 |
[17] | C. R. Putnam, On the normal operators on Hilbert space, Amer. J. Math., 73 (1951), 357–362. doi: 10.2307/2372180 |
[18] | M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Zeitschrift, 194 (1987), 117–120. doi: 10.1007/BF01168010 |
[19] | M. H. M. Rashid, M. S. M. Noorani, On relaxation normality in the Fulgede-Putnam's theorem for a quasi-class $\mathcal{A}$ operators, Tamkang. J. Math., 40 (2009), 307–312. doi: 10.5556/j.tkjm.40.2009.508 |
[20] | J. Stochel, Seminormality of Operators from their Tensor Product, Proc. Amer. Math. Soc., 124 (1996), 435–440. |
[21] | A. Uchiyama, K. Tanahashi, Fuglede-Putnam's theorem for $p$-hyponormal or $\log$-hyponormal operators, Glasgow Math. J., 44 (2002), 397–410. doi: 10.1017/S0017089502030057 |
[22] | M. Yeşilkayagil, F. Başar, A survey for the spectrum of triangles over sequences spaces, Numer. Funct. Anal. Optim., 40 (2019), 1898–1917. doi: 10.1080/01630563.2019.1639731 |
[23] | T. Yoshino, Remark on the generalized Putnam–Fuglede theorem, Proc. Amer. Math. Soc., 95 (1985), 571–572. doi: 10.1090/S0002-9939-1985-0810165-7 |