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Abstract: We will call U ∈ B(X) as an operator of class Ak if for some integer k, the following
inequality is satisfied:

|Uk+1|
2

k+1 ≥ |U |2.

In the present article, some basic spectral properties of this class are given, also the asymmetric
Putnam-Fuglede theorem and the range kernel orthogonality for classAk operators are proved.
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1. Introduction

Spectral theory has a key important role in the modern functional analysis and its applications
in various fields [4, 15]. Basically, it is incorporated with specific inverse operators, their common
properties and their dealings with the original operators. Such inverse operators play a major role in
solving systems of linear algebraic equations, differential and Sylvester equations.

Everywhere in this paper, a complex Hilbert space of infinite dimension with the inner product
〈·, ·〉 will be denoted by X and B(X) indicates the algebra of all linear bounded operators which act on
X. Spectrum, approximate spectrum, residual spectrum, and point spectrum of an operator U will be
denoted by σ(U), σa(U), σr(U), and σp(U), respectively. The kernel of an operator U will be denoted
by ker(U) and the range by ran (U).

For each operator U ∈ B(X), we set, as usual |U | = (U∗U)1/2, and review the following standard
(familiar) definitions:

U is normal if U∗U = UU∗, and
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U is hyponormal if |U∗|2 ≤ |U |2,

(i.e. equivalently, if ‖U∗x‖ ≤ ‖Ux‖ for every x ∈ X).

An operator U ∈ B(X) is said to be of classA if and only if |U2| ≥ |U |2.
The class of hyponormal operator has been studied by many authors. In recent years this class has

been generalized, in some sense, to the larger sets of so called class p−hyponormal, log−hyponormal
[21], w-hyponormal [2] and classA operators [19].

Definition 1. An operator U ∈ B(X) is said to be classAk operator if

|Uk+1|
2

k+1 ≥ |U |2,

holds for some integer k.

The classA coincides with classAk when k = 1.

Example 2. If U ∈ B(X) is a bilateral shift operator with weights {αn}, αn , 0, then U is class Ak if
and only if

|αn+1| · · · |αn+k| ≥ |αn|
k.

Our first goal is to prove that the classA shares many properties with that of hyponormal operators.
The following inclusions give the relationships between these operators

hyponormal ⊂ p-hyponormal
⊂ log -hyponormal

⊂ w-hyponormal
⊂ classA
⊂ classAk.

The generalized derivation δU,T : B(X) → B(X) for U,T ∈ B(X) is defined by δU,T (H) = UH − HT
for H ∈ B(X), and we note δU,U = δU . If the following inequality

‖T − (UH − HU)‖ ≥ ‖T‖,

holds for all T ∈ ker δU and for all H ∈ B(X), then we remark that the range of δU is orthogonal to the
kernel of δU .

The familiar Putnam-Fuglede’s theorem affirms that if both U ∈ B(X) and T ∈ B(X) are normal
operators and UH = HT for some H ∈ B(X), then U∗H = HT ∗ (see [17]). This theorem attracted
attention of many researchers and they extended it for several nonnormal classes of operators (see
[2–4, 10, 12–15, 18, 19, 21–23]).

In this artcle, our second goal is extend this theorem to class Ak operators and prove the range
kernel orthogonality for classAk operators.

Let U ∈ B(X) and let {en} be an orthonormal basis of a Hilbert space X. The Hilbert-Schmidt norm
is given by

‖U‖2 =

 ∞∑
n=1

‖Uen‖
2


1
2

.
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An operator U is called to be a Hilbert-Schmidt operator if ‖U‖2 < ∞ (see [8] for details). C2(X)
denotes a set of all Hilbert-Schmidt operators. For T,U ∈ B(X), the operator ΓT,U defined as ΓT,U :
C2(X) 3 H → T HU ∈ C2(X) has been studied in [6]. It is known that ‖Γ‖ ≤ ‖T‖‖U‖ and (ΓT,U)∗H =

T ∗HU∗ = ΓT ∗,U∗H. If U ≥ 0 and T ≥ 0, then ΓU,T ≥ 0. For more information see [6].
We organise our paper as follows: Section 2 deals with some properties for classAk operators which

will be needed to prove our main results. We present our main theorems, like the asymmetric Putnam-
Fuglede’s theorem for someAk class operators and also some orthogonality results in section 3.

2. Materials and method

Properties of classAk operators

Theorem 3. [11] If U ∈ B(X) is a p-hyponormal or a log-hyponormal operator, then U is class Ak

operator, for each positive integer k.

Corollary 4. Every hyponormal operator is a classAk operator.

Theorem 5. [11] If U ∈ B(X) is an invertible classA, then U is classAk operator for every k.

A number λ ∈ C is said to be in the joint spectrum of operator U if there exist a joint eigenvector v
corresponding to U and U∗ such that Uv = λv and U∗v = λ̄v, where λ̄ is the complex conjugate of λ.
We will denote the joint point spectrum and the point spectrum of operator U by σ jp(U) and σp(U),
respectively.

Theorem 6. Let U ∈ B(X) be a classAk operator. Then the following hold

(i) If Uv = λv, λ , 0, then U∗v = λ̄v,
(ii) σ jp(U) − {0} = σp(U) − {0},

(iii) Let Uv = λv and Uw = µw with λ , µ. Then v ⊥ w.

Proof. (i) We have that the following

|λ|2‖v‖2 = ‖Uv‖2

= 〈|U |2v, v〉

≤ 〈|Uk+1|
2

k+1 v, v〉

≤ 〈|Uk+1|v, v〉
2

k+1 ‖v‖
2

k+1

≤ ‖|Uk+1x|‖
2

k+1 ‖v‖
2

k+1

=

(
|λ|2(k+1)‖v‖2

) 1
k+1

‖v‖
2

k+1

= |λ|2‖v‖2

follow from using Holder-McCarthy and Schwarz’s inequalities.

Hence
|λ|2〈v, v〉 = 〈U∗Uv, v〉 = 〈|Uk+1|

2
k+1 v, v〉.

Since |Uk+1|
2

k+1 v and v are linearly independent [16], we get

|Uk+1|
2

k+1 v = |λ|2v.

AIMS Mathematics Volume 6, Issue 4, 4073–4082.



4076

Also,
‖(|Uk+1|

2
k+1 − U∗U)

1
2 v‖2 = 〈(|Uk+1|

2
k+1 − U∗U)v, v〉 = 0.

Therefore
U∗Uv = |Uk+1|

2
k+1 v = |λ|2v,

and so
(U − λ)∗v = 0.

(ii) We can easily see that (ii) follows from the definition of the joint point spectrum and (i).

(iii) Let Uv = λv and Uw = µw, then

〈Uv,w〉 = 〈λv,w〉

= λ〈v,w〉

= 〈v,U∗w〉

= 〈v, µ̄w〉

= µ〈v,w〉.

Since λ , µ, then 〈v,w〉 = 0, i.e., v ⊥ w.
�

Definition 7. We say that U ∈ B(H) is finite if the distance dist(I, ran(δU)) ≥ 1 from the identity to the
range of δU .

Definition 8. If U ∈ B(H), we denote by σar(U) the reduisant approximate spectrum, the set of scalars
λ for which there is a normalized sequence {xn} ⊂ H verifying

(U − λ)xn −→ 0 and (U − λ)∗xn −→ 0

Proposition 9. [1] Let U ∈ B(H), if σra is not empty, then U is finite.

Proposition 10. (Berberian Technique) [5]
Let H be a complex Hilbert space, then there is a Hilbert space K ⊃ H and ϕ : B(H) → B(K)
(U 7→ Ũ) satisfying: ϕ is an *-isomorphism preserving the order such that:

(i) ϕ(U∗) = ϕ(U)∗, ϕ(I) = Ĩ;
(ii) ϕ(αU + βV) = αϕ(U) + βϕ(V), ϕ(UV) = ϕ(U)ϕ(V);

(iii) ‖ϕ(U)‖ = ‖U‖
(iv) ϕ(U) ≤ ϕ(V) i f U ≤ V, for all U,V ∈ B(H), α, β ∈ C;
(v) σ(U) = σ(Ũ), σa(U) = σa(Ũ) = σp(Ũ).

Proposition 11. If U ∈ B(H) is a classAk, then ϕ(U) is a classAk.

Proof. By using Berberian technique, we prove easily that

|ϕ(U)k+1|
2

k+1 = |ϕ(Uk+1)|
2

k+1

= ϕ(|Uk+1|
2

k+1 )
≥ ϕ(|U |2)
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= |ϕ(U)|2,

this means that ϕ(U) is a classAk. �

Proposition 12. If U ∈ B(H) is a classAk, then U is finite.

Proof. From Proposition 11 ϕ(U) is a class Ak, with σa(U) = σa(Ũ) = σp(Ũ) using Berberian tech-
nique, since σa(U) is never empty and σ jp(U) − {0} = σp(U) − {0}, so by Theorem 6, it follows that
σra(U) , ∅ implying U is finite. �

Proposition 13. If U ∈ Ak, then U∗ < ran(δU).

Proof. Let λ ∈ σra − {0} , ∅, then there is a normalized sequence {xn} such that

(U − λ)xn −→ 0 and (U − λ)∗xn −→ 0

and let X ∈ B(H), then

‖UX − XU − U∗‖ = ‖(U − λ)X − X(U − λ) − (U∗ − λ) − λ|
≥ ‖(〈U − λ)Xxn, xn〉 − 〈X(U − λ)xn, xn〉 − 〈(U∗ − λ〉 − λ‖

letting n→ ∞, we get ‖UX − XU − U∗‖ ≥ |λ‖ implying U∗ < ran(δU). �

Proposition 14. If U is a class Ak and N is a normal opeartor such that UN = NU, then for every
λ ∈ σp(N)

|λ| ≤ dist(N, ran(δU))

Proof. Let λ ∈ σp(N) andMλ be the eigenspace associated to λ. Since NU = UN, then U∗N = NU∗

by Putnam-Fuglede Theorem. HenceMλ reduces orthogonaly U and N. Let T ∈ B(H), we can write
U,N and T according to the decmpositiom ofH =Mλ ⊕M

⊥
λ as follows:

U =

[
U1 0

0 U2

]
, U =

[
N1 0

0 N2

]
, and U =

[
T1 T2

T3 T4

]
.

We have

‖N + UT − TU‖ =

∥∥∥∥∥[ λ + U1T1 − T1U1 ∗

∗ ∗

]∥∥∥∥∥
≥ ‖λ + U1T1 − T1U1‖

≥ |λ|‖

∥∥∥∥∥I + U1

(T1

λ

)
−

(T1

λ

)∥∥∥∥∥
≤ |λ|.

�

Proposition 15. If U is a class Ak, then for every normal operator N such that UN = NU, we have
‖N‖ ≤ dist(N, ran(δU)).
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Proof. Let λ ∈ σ(N) = σa(N) [1], from proposition 10, Ñ is normal and Ũ is a classAk, ˜NU = ÑŨ =

ŨÑ, also λ ∈ σp(Ñ. Applying proposition (14), we get for every T ∈ B(H)

|λ| ≤ ‖Ñ + ŨT̃ − T̃ Ũ |vert = ‖N + UT − TU‖

Therefore
sup
λ∈σ(Ñ

|λ| = ‖Ñ‖ = ‖N‖ ≤ ‖N + UT − TU‖.

�

We will denote by U ⊗ T , the tensor product of some non-zero operators U,T ∈ B(X), on the
product space X ⊕ X. We can see the importance the tensor product operation U ⊕ T as it preserves
many properties of U,T ∈ B(X). It can be checked that the tensor product of operators U and T i.e.
U ⊕ T is hyponormal if and only if U and T are hyponormal [9].

We will obtain an analogous result for class Ak operators in this section. Before stating our main
theorems, we need some preliminary results.

Lemma 16. [20] Let U1,U2 ∈ B(X),T1,T2 ∈ B(X) be non-negative operators. If U1 and T1 are
non-zero, then the following assertions are equivalent

1. U1 ⊕ T1 ≤ U2 ⊕ T2

2. There exists c > 0 for which U1 ≤ U2 and T1 ≤ c−1T2.

Lemma 17. If U,T ∈ B(X) are classAk operators, then U ⊕ T is classAk operator.

Proof. Since U and T are classAk operators, then

|(U ⊕ T )k+1|
2

k+1 = |Uk+1|
2

k+1 ⊕ |T k+1|
2

k+1

≥ |U |2 ⊕ |T |2

= |U ⊕ T |.

Hence U ⊕ T is a classAk operator. �

Theorem 18. [11] If U is a class Ak operator andM is an invariant subspace of U, the restriction
U |M is also a classAk.

3. Main results

In the following, we prove that if H is a Hilbert-Schmidt operator, U is a class Ak operator and T ∗

is an invertible classA following the relation UH = HT , then U∗H = HT ∗.

Theorem 19. Let U and T ∈ B(X). Then ΓU,T is a classAk operator on C2(X) if and only if U and T ∗

belong toAk operators.

Proof. The unitary operator
U : C2(X)→ X ⊕ X

AIMS Mathematics Volume 6, Issue 4, 4073–4082.
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defined by
(v ⊕ w)∗ = v ⊕ w

induces the ∗-isomorphism
ψ : B(C2(X))→ B(X ⊕ X)

by a map
H 7→ UHU∗.

Then we can obtain
ψ(ΓU,T ) = U ⊕ T ∗,

see [7] for details. This completes the proof by Lemma 17. �

Theorem 20. Let U be a class Ak operator and T ∗ an invertible class A operator. If UH = HT for
some H ∈ C2(X), then U∗H = HT ∗.

Proof. Let Γ be defined on C2(X) by
Γ(V) = UVT−1.

The operator T is an invertible classA, then T is a classAk by Theorem 5.

Since U and (T−1)∗ = (T ∗)−1 areAk operators, we have by Theorem 19, we can say that Γ is also an
Ak operator. Moreover,

Γ(H) = UHT−1 = H

because of UH = HT . Hence, H is an eigenvector of Γ. By Theorem 6, we have

Γ∗(H) = U∗H(T−1)∗ = H,

that is,
U∗H = HT ∗

as desired. �

Corollary 21. Let U ∈ B(X) be a class A and T ∗ be an invertible class A such that UH = HT for
some H ∈ C2(X). Then, U∗H = HT ∗.

Corollary 22. Let U ∈ B(X) be hyponormal and T ∗ be an invertible class A such that UH = HT for
some H ∈ C2(X). Then, U∗H = HT ∗.

Corollary 23. Let U ∈ B(X) be a class Ak and T ∗ be an invertible hyponormal such that UH = HT
for some H ∈ C2(X). Then, U∗H = HT ∗.

Corollary 24. Let U ∈ B(X) be a class A and T ∗ be an invertible hyponormal such that UH = HT
for some H ∈ C2(X). Then, U∗H = HT ∗.

Now, we are ready to extend the orthogonality results to some classAk operators.

AIMS Mathematics Volume 6, Issue 4, 4073–4082.
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Theorem 25. Let U,T ∈ B(X) and V ∈ C2(X). Then

‖δU,T (H) + V‖22 = ‖δU,T (H)‖22 + ‖V‖22, (3.1)

and
‖δ∗U,T (H) + V‖22 = ‖δ∗U,T (H)‖22 + ‖V‖22, (3.2)

if and only if δU,T (V) = 0 = δU∗,T ∗(V) for all V ∈ C2(X).

Proof. It is known that the Hilbert-Schmidt class C2(X) is a Hilbert space. Note that

‖δU,T (H) + V‖22 = ‖δU,T ‖
2
2 + ‖V‖22 + Re〈δU,T (H),V〉

= ‖δU,T ‖
2
2 + ‖V‖22 + Re〈H, δ∗U,T (V)〉,

and
‖δ∗U,T (H) + V‖22 = ‖δ∗U,T ‖

2
2 + ‖V‖22 + Re〈H, δ∗U,T (V)〉. (3.3)

Hence by the equality δU,T (V) = 0 = δU∗,T ∗(V), we obtain (3.1) and (3.2). So, this completes the proof
as our claim is verified. �

Corollary 26. Let U,T be operators in B(X) and V ∈ C2(X). Then

‖δU,T (H) + V‖22 = ‖δU,T (H)‖22 + ‖V‖22

and

‖δ∗U,T (H) + V‖22 = ‖δ∗U,T (H)‖22 + ‖V‖22

if either of the following hold

(i) U is a classAk and (T ∗)−1 is a classA;
(ii) U is a classA and (T ∗)−1 is a classA;

(iii) U is hyponormal and (T ∗)−1 is a classA;
(iv) U is a classAk and (T ∗)−1 is hyponormal.

4. Discussions

The basic properties of classAk are studied and discussed. The Putnam-Fuglede Theorem plays an
important role in operator theory. We proved that the Putnam-Fuglede Theorem for classAk operators
holds in the Hilbert-Schmidt case. Also, range-kernel results for the generalized derivations induced
by certainAk classes are obtained.

5. Conclusions

The questions which logically arise after this study are as follows:

1. Is the Putnam-Fuglede Theorem remains true forAk class in any Hilbert space H?
2. Is the Putnam-Fuglede Theorem remains true forAk class in any bilateral ideal in B(H)?

AIMS Mathematics Volume 6, Issue 4, 4073–4082.
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