Research article

Daily nonparametric ARCH(1) model estimation using intraday high frequency data

  • Received: 15 October 2020 Accepted: 13 January 2021 Published: 20 January 2021
  • MSC : 62G05, 62G20

  • In this paper, the intraday high-frequency data are used to estimate the volatility function of daily nonparametric ARCH(1) model. A nonparametric volatility proxy model is proposed to achieve this objective. Under regular assumptions, the asymptotic distribution of the proposed estimator is established. The impact of different proxies on the estimation precision is also discussed. Simulation and empirical studies show that using the intraday high frequency data can significantly improve the estimation accuracy of the considered model. The idea of this article can be easily extended to other nonparametric or semiparametric ARCH/GARCH models.

    Citation: Xin Liang, Xingfa Zhang, Yuan Li, Chunliang Deng. Daily nonparametric ARCH(1) model estimation using intraday high frequency data[J]. AIMS Mathematics, 2021, 6(4): 3455-3464. doi: 10.3934/math.2021206

    Related Papers:

  • In this paper, the intraday high-frequency data are used to estimate the volatility function of daily nonparametric ARCH(1) model. A nonparametric volatility proxy model is proposed to achieve this objective. Under regular assumptions, the asymptotic distribution of the proposed estimator is established. The impact of different proxies on the estimation precision is also discussed. Simulation and empirical studies show that using the intraday high frequency data can significantly improve the estimation accuracy of the considered model. The idea of this article can be easily extended to other nonparametric or semiparametric ARCH/GARCH models.


    加载中


    [1] R. F. Engle, Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation, Economics, 50 (1982), 987–1008.
    [2] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31 (1986), 307–327. doi: 10.1016/0304-4076(86)90063-1
    [3] D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica: J. Econometric Soc., 59 (1991), 347–370. doi: 10.2307/2938260
    [4] L. Hentschel, All in the family Nesting symmetric and asymmetric GARCH models, J. Financ. Econ., 39 (1995), 71–104. doi: 10.1016/0304-405X(94)00821-H
    [5] C. Kl$\ddot{u}$ppelberg, A. Lindner, R. Maller, A continuous-time GARCH process driven by a L$\acute{e}v$y process: Stationarity and second-order behaviour, J. Appl. Probab., 41 (2004), 601–622. doi: 10.1239/jap/1091543413
    [6] J. Pan, H. Wang, H. Tong, Estimation and tests for power-transformed and threshold GARCH models, J. Econometrics, 142 (2008), 352–378. doi: 10.1016/j.jeconom.2007.06.004
    [7] Y. Zou, L. Yu, K. He, Estimating portfolio value at risk in the electricity markets using an entropy optimized BEMD approach, Entropy, 17 (2015), 4519–4532. doi: 10.3390/e17074519
    [8] T. Tetsuya, Volatility estimation using a rational GARCH model, Quant. Finance Econ., 2 (2018), 127–136. doi: 10.3934/QFE.2018.1.127
    [9] D. G. Davide, Forecasting volatility using combination across estimation windows: An application to S&P500 stock market index, Math. Biosci. Eng., 16 (2019), 7195–7216. doi: 10.3934/mbe.2019361
    [10] A. G. Samuel, Modelling the volatility of Bitcoin returns using GARCH models, Quant. Finance Econ., 3 (2019), 739–753. doi: 10.3934/QFE.2019.4.739
    [11] X. Zhang, R. Zhang, Y. Li, S. Q. Ling, LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise, J. Econometrics, 2020. Available from: https://doi.org/10.1016/j.jeconom.2020.06.011.
    [12] O. Linton, J. Wu, A coupled component DCS-EGARCH model for intraday and overnight volatility, J. Econometrics, 217 (2020), 176–201. doi: 10.1016/j.jeconom.2019.12.015
    [13] R. F. Engle, V. K. Ng, Measuring and testing the impact of news on volatility, J. Finance., 48 (1993), 1749–1778. doi: 10.1111/j.1540-6261.1993.tb05127.x
    [14] W. Härdle, A. Tsybakov, Local polynomial estimation of the volatility function in nonparametric autoregression, J. Econometrics, 81 (1997), 223–242. doi: 10.1016/S0304-4076(97)00044-4
    [15] P. Bühlmann, A. J. McNeil, An algorithm for nonparametric GARCH modelling, Comput. Stat. Data Anal., 40 (2002), 665–683. doi: 10.1016/S0167-9473(02)00080-4
    [16] L. J. Yang, A semiparametric GARCH model for foreign exchange volatility, J. Econometrics, 130 (2006), 365–384. doi: 10.1016/j.jeconom.2005.03.006
    [17] F. Giordano, L. M. Parrella, Efficient nonparametric estimation and inference for the volatility function, Statistics, 53 (2019), 770–791. doi: 10.1080/02331888.2019.1615066
    [18] X. Chen, Z. Huang, Y. Yi, Efficient estimation of multivariate semi-nonparametric GARCH filtered copula models, J. Econometrics, 2020. Available from: https://doi.org/10.1016/j.jeconom.2020.07.012.
    [19] M. P. Visser, Garch parameter estimation using high-frequencydata, J. Financ. Econometrics, 9 (2011), 162–197. doi: 10.1093/jjfinec/nbq017
    [20] J. S. Huang, W. Q. Wu, Z. Chen, J. J. Zhou, Robust M-estimate of GJR model with high frequency data, Acta Math. Appl. Sin., 31 (2015), 591–606. doi: 10.1007/s10255-015-0488-y
    [21] M. Wang, Z. Chen, C. D. Wang, Composite quantile regression for GARCH models using high-frequency data, Econometrics Stat., 7 (2018), 115–133. doi: 10.1016/j.ecosta.2016.11.004
    [22] C. Deng, X. Zhang, Y. Li, Q. Xiong, Garch model test using high-frequency data, Mathematics, 8 (2020), 1922. doi: 10.3390/math8111922
    [23] J. Q. Fan, Q. W. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, New York: Springer, 2005.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2460) PDF downloads(139) Cited by(4)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog