Citation: Inga Timofejeva, Zenonas Navickas, Tadas Telksnys, Romas Marcinkevičius, Xiao-Jun Yang, Minvydas Ragulskis. The extension of analytic solutions to FDEs to the negative half-line[J]. AIMS Mathematics, 2021, 6(4): 3257-3271. doi: 10.3934/math.2021195
[1] | B. Ross, The development of fractional calculus 1695–1900, Hist. Math., 4 (1977), 75–89. |
[2] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier Science Limited, 2006. |
[3] | R. L. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. |
[4] | K. Adolfsson, M. Enelund, P. Olsson, On the fractional order model of viscoelasticity, Mech. Time-depend. Mat., 9 (2005), 15–34. |
[5] | S. Pal, Mechanical properties of biological materials, Design of Artificial Human Joints & Organs, (2014), 23–40. Springer. |
[6] | N. Grahovac, M. Žigić, Modelling of the hamstring muscle group by use of fractional derivatives, Comput. Math. Appl., 59 (2010), 1695–1700. |
[7] | C. Ionescu, A. Lopes, D. Copot, J. T. Machado, J. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci., 51 (2017), 141–159. |
[8] | M. P. Aghababa, M. Borjkhani, Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme, Complexity, 20 (2014), 37–46. |
[9] | A. Ortega, J. Rosales, J. Cruz-Duarte, M. Guia, Fractional model of the dielectric dispersion, Optik, 180 (2019), 754–759. |
[10] | V. E. Tarasov, Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys., 158 (2009), 355–359. |
[11] | B. Ducharne, B. Newell, G. Sebald, A unique fractional derivative operator to simulate all dynamic piezoceramic dielectric manifestations: From aging to frequency-dependent hysteresis, IEEE T. Ultrason. Ferr., 67 (2019), 197–206. |
[12] | R. Zhang, Z. Han, Y. Shao, Z. Wang, Y. Wang, The numerical study for the ground and excited states of fractional Bose–Einstein condensates, Comput. Math. Appl., 78 (2019), 1548–1561. |
[13] | V. E. Tarasov, V. V. Tarasova, Macroeconomic models with long dynamic memory: Fractional calculus approach, Appl. Math. Comput., 338 (2018), 466–486. |
[14] | V. E. Tarasov, V. V. Tarasova, Time-dependent fractional dynamics with memory in quantum and economic physics, Ann. Phys., 383 (2017), 579–599. |
[15] | A. A. Arafa, A. M. S. Hagag, A new analytic solution of fractional coupled Ramani equation, Chinese J. Phys., 60 (2019), 388–406. |
[16] | E. Demirci, N. Ozalp, A method for solving differential equations of fractional order, J. Comput. Appl. Math., 236 (2012), 2754–2762. |
[17] | K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3–22. |
[18] | M. Kumar, V. Daftardar-Gejji, A new family of predictor-corrector methods for solving fractional differential equations, Appl. Math. Comput., 363 (2019), 124633. |
[19] | A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. |
[20] | M. Pourbabaee, A. Saadatmandi, A novel Legendre operational matrix for distributed order fractional differential equations, Appl. Math. Comput., 361 (2019), 215–231. |
[21] | M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numerical Methods for Partial Differential Equations: An International Journal, 26 (2010), 448–479. |
[22] | L. Aceto, D. Bertaccini, F. Durastante, P. Novati, Rational Krylov methods for functions of matrices with applications to fractional partial differential equations, J. Comput. Phys., 396 (2019), 470–482. |
[23] | Y.-L. Wang, L.-n. Jia, H.-l. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. |
[24] | A. R. Khudair, S. Haddad, Restricted fractional differential transform for solving irrational order fractional differential equations, Chaos, Solitons & Fractals, 101 (2017), 81–85. |
[25] | C. Zúñiga-Aguilar, H. Romero-Ugalde, J. Gómez-Aguilar, R. Escobar-Jiménez, M. Valtierra-Rodriguez, Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks, Chaos, Solitons & Fractals, 103 (2017), 382–403. |
[26] | G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 2001. |
[27] | Z. Navickas, T. Telksnys, R. Marcinkevicius, M. Ragulskis, Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations, Chaos Solitons and Fractals, 104 (2017), 625–634. |
[28] | L. Bikulčienė, Z. Navickas, Expressions of solutions of linear partial differential equations using algebraic operators and algebraic convolution, International Conference on Numerical Analysis and Its Applications, (2008), 208–215. Springer. |
[29] | Z. Navickas, T. Telksnys, I. Timofejeva, R. Marcinkevicius, M. Ragulskis, An operator-based approach for the construction of closed-form solutions to fractional differential equations, Math. Model. Anal., 23 (2018), 665–685. |
[30] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands, 2006. |
[31] | J. W. Brown, R. V. Churchill, Complex variables and applications eighth edition, Boston: McGraw-Hill Higher Education, 2009. |
[32] | Z. Navickas, L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399–412. |
[33] | Z. Navickas, M. Ragulskis, L. Bikulciene, Special solutions of Huxley differential equation, Math. Model. Anal., 16 (2011), 248–259. |
[34] | Z. Navickas, L. Bikulciene, M. Rahula, M. Ragulskis, Algebraic operator method for the construction of solitary solutions to nonlinear differential equations, Commun. Nonlinear Sci., 18 (2013), 1374–1389. |
[35] | F. Ndairou, I. Area, J. J. Nieto, D. F. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons & Fractals, (2020), 109846. |
[36] | G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., (2020), 1–6. |