Research article

Transportation inequalities for doubly perturbed stochastic differential equations with Markovian switching

  • Received: 22 October 2020 Accepted: 16 December 2020 Published: 07 January 2021
  • MSC : 60H15, 60G15, 60H05

  • In this paper, we focus on a class of doubly perturbed stochastic differential equations with Markovian switching. Using the Girsanov transformation argument we establish the quadratic transportation inequalities for the law of the solution of those equations with Markovian switching under the $ d_2 $ metric and the uniform metric $ d_{\infty} $.

    Citation: Liping Xu, Zhi Li, Weiguo Liu, Jie Zhou. Transportation inequalities for doubly perturbed stochastic differential equations with Markovian switching[J]. AIMS Mathematics, 2021, 6(3): 2874-2885. doi: 10.3934/math.2021173

    Related Papers:

  • In this paper, we focus on a class of doubly perturbed stochastic differential equations with Markovian switching. Using the Girsanov transformation argument we establish the quadratic transportation inequalities for the law of the solution of those equations with Markovian switching under the $ d_2 $ metric and the uniform metric $ d_{\infty} $.



    加载中


    [1] S. Bobkov, F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 163 (1999), 1–28. doi: 10.1006/jfan.1998.3326
    [2] B. Boufoussi, S. Hajji, Transportation inequalities for neutral stochastic differential equations driven by fractional Brownian motion with Hurst parameter lesser than $1/2$, Mediterr. J. Math., 14 (2017), 192. doi: 10.1007/s00009-017-0992-9
    [3] J. Bao, F. Wang, C. Yuan, Transportation cost inequalities for neutral functional stochastic equations, Z. Anal. Anwend., 32 (2013), 457–475. doi: 10.4171/ZAA/1494
    [4] P. Carmona, F. Petit, M. Yor, Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion, Probab. Theory Relat. Fields, 100 (1994), 1–29. doi: 10.1007/BF01204951
    [5] P. Carmona, F. Petit, M. Yor, Beta variables as times spent in $[0, \infty)$ by certain perturbed Brownian motions, J. Lond. Math. Soc., 58 (2016), 239–256.
    [6] L. Chaumont, R. A. Doney, Some calculations for doubly perturbed Brownian motion, Stochastic Process. Appl., 85 (2000), 61–74. doi: 10.1016/S0304-4149(99)00065-4
    [7] B. Davis, Brownian motion and random walk perturbed at extrema. Probab. Theory Relat. Fields., 113 (1999), 501–518.
    [8] R. A. Doney, T. Zhang, Perturbed Skorohod equations and perturbed reflected diffusion processes, Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 107–121. doi: 10.1016/j.anihpb.2004.03.005
    [9] H. Djellout, A. Guilin, L. Wu, Transportation cost-information inequalities for random dynamical systems and diffsions, Ann. Probab., 32 (2004), 2702–2732.
    [10] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimonsionals, Cambridge: Cambridge University Press, 1992.
    [11] D. Feyel, A. S. Üstünel, The Monge-Kantorovitch problem and Monge-Ampère equation on Wiener space, Probab. Theory Relat. Fields., 128 (2004), 347–385. doi: 10.1007/s00440-003-0307-x
    [12] A. Friedman, Stochastic Differential Equations and Applications, Vols. I and II, New York: Academic Press, 1975.
    [13] L. Hu, Y. Ren, Doubly perturbed neutral stochastic functional equations, J. Comput. Appl. Math., 31 (2009), 319–326.
    [14] Z. Li, J. W. Luo, Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion, Front. Math. China, 10 (2015), 303–321. doi: 10.1007/s11464-015-0387-9
    [15] D. Liu, Y. Yang, Doubly perturbed neutral diffusion processes with Markovian switching and Poisson jumps, Appl. Math. Lett., 23 (2010), 1141–1146. doi: 10.1016/j.aml.2009.07.004
    [16] J. W. Luo, Doubly perturbed jump-diffusion processes, J. Appl. Math. Anal., 351 (2009), 147–151. doi: 10.1016/j.jmaa.2008.09.024
    [17] Y. Ma, Transportation inequalities for stochastic differential equations with jumps, Stochastic Process. Appl., 120 (2010), 2–21. doi: 10.1016/j.spa.2009.09.012
    [18] W. Mao, L. J. Hu, X. R. Mao, Approximate solutions for a class of doubly perturbed stochastic differential equations, Adv. Differ. Equations, 2018 (2018), 37. doi: 10.1186/s13662-018-1490-5
    [19] J. Norris, L. Rogers, D. Williams, Self-avoiding random walk: A Brownian motion model with local time drift, Probab. Theory Relat. Fields, 74 (1987), 271–287. doi: 10.1007/BF00569993
    [20] F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361–400. doi: 10.1006/jfan.1999.3557
    [21] S. Pal, Concentration for multidimensional diffusions and their boundary local times, Probab. Theory Relat. Fields, 154 (2012), 225–254. doi: 10.1007/s00440-011-0368-1
    [22] B. Pei, Y. Xu, G. Yin, Averaging principles for SPDEs driven by fBm with random delay modulated by two-time-scale Markovian switching processes, Stoch. Dynam., 18 (2018), 1850023. doi: 10.1142/S0219493718500235
    [23] M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Relat. Fields, 108 (1997), 357–383.
    [24] B. Saussereau, Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion, Bernoulli, 18 (2012), 1–23.
    [25] M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., 6 (1996), 587–600. doi: 10.1007/BF02249265
    [26] A. S. Üstünel, Transport cost inequalities for diffusions under uniform distance, Stochastic Anal. Relat. Top., 22 (2012), 203–214. doi: 10.1007/978-3-642-29982-7_9
    [27] F. Y. Wang, Transportation cost inequalities on path spaces over Riemannian manifolds, Illinois J. Math., 46 (2002), 1197–1206.
    [28] F. Y. Wang, Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal., 206 (2004), 167–190. doi: 10.1016/S0022-1236(02)00100-3
    [29] L. Wu, Transportation inequalities for stochastic differential equations of pure jumps, Ann. Inst. Henri Poincaré Probab. Stat., 46 (2010), 465–479.
    [30] L. Wu, Z. Zhang, Talagrand's $T_2$-transportation inequality w.r.t. a uniform metric for diffusions, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 357–364.
    [31] L. Wu, Z. Zhang, Talagrand's $T_2$-transportation inequality and log-Sobolev inequality for dissipative SPDEs and applications to reaction-diffusion equations, Chinese Ann. Math. Ser. B, 27 (2006), 243–262. doi: 10.1007/s11401-005-0176-y
    [32] G. Yin, C. Zhu, Properties of solutions of stochastic differential equations with continuous-state-dependent switching, J. Differ. Equations, 249 (2010), 2409–2439. doi: 10.1016/j.jde.2010.08.008
    [33] C. Zhu, G. Yin, On strong feller, recurrence, and weak stabilization of regime-switching diffusions, SIAM J. Control Optim., 48 (2009), 2003–2031. doi: 10.1137/080712532
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1179) PDF downloads(39) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog