Research article

Global existence and finite time blow-up for a class of fractional $ p $-Laplacian Kirchhoff type equations with logarithmic nonlinearity

  • Received: 15 October 2020 Accepted: 21 December 2020 Published: 23 December 2020
  • MSC : 39A13, 34B18, 34A08

  • In this paper, we study the initial-boundary value problem for a class of fractional $ p $-Laplacian Kirchhoff diffusion equation with logarithmic nonlinearity. For both subcritical and critical states, by means of the Galerkin approximations, the potential well theory and the Nehari manifold, we prove the global existence and finite time blow-up of the weak solutions. Further, we give the growth rate of the weak solutions and study ground-state solution of the corresponding steady-state problem.

    Citation: Fugeng Zeng, Peng Shi, Min Jiang. Global existence and finite time blow-up for a class of fractional $ p $-Laplacian Kirchhoff type equations with logarithmic nonlinearity[J]. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155

    Related Papers:

  • In this paper, we study the initial-boundary value problem for a class of fractional $ p $-Laplacian Kirchhoff diffusion equation with logarithmic nonlinearity. For both subcritical and critical states, by means of the Galerkin approximations, the potential well theory and the Nehari manifold, we prove the global existence and finite time blow-up of the weak solutions. Further, we give the growth rate of the weak solutions and study ground-state solution of the corresponding steady-state problem.



    加载中


    [1] M. Xiang, D. Yang, B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asymptotic Anal., 118 (2020), 313-329. doi: 10.3233/ASY-191564
    [2] M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198 (2020), 1-20.
    [3] H. Ding, J. Zhou, Global existence and blow-Up for a parabolic problem of Kirchhoff type with Logarithmic nonlinearity, Appl. Math. Optim., 8 (2019), 1-57.
    [4] O. C. Alves, T. Boudjeriou, Existence of solution for a class of nonlocal problem via dynamical methods, Nonlinear Anal., 3 (2020), 1-17.
    [5] M. Xiang, B. Zhang, H. Qiu, Existence of solutions for a critical fractional Kirchhoff type problem in N, Sci. China Math., 60 (2017), 1647-1660. doi: 10.1007/s11425-015-0792-2
    [6] D. Lu, S. Peng, Existence and concentration of solutions for singularly perturbed doubly nonlocal elliptic equations, Commun. Contemp. Math., 22 (2020), 1-37.
    [7] W. Qing, Z. Zhang, The blow-up solutions for a Kirchhoff-type wave equation with different-sign nonlinear source terms in high energy Level, Per. Oc. Univ. China., 48 (2018), 232-236.
    [8] H. Guo, Y. Zhang, H. Zhou, Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential, Commun. Pure Appl. Anal., 17 (2018), 1875-1897. doi: 10.3934/cpaa.2018089
    [9] Q. Lin, X. Tian, R. Xu, M. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst., 13 (2020), 2095-2107.
    [10] M. Xiang, V. D. Dulescu, B. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity, 31 (2018), 3228-3250. doi: 10.1088/1361-6544/aaba35
    [11] J. Zhou, Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping, Appl. Math. Comput., 265(2015), 807-818.
    [12] E. Piskin, F. Ekinci, General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms, Math. Methods Appl. Sci., 11 (2019), 5468-5488.
    [13] Y. Yang, J. Li, T. Yu, Qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math., 141 (2019), 263-285. doi: 10.1016/j.apnum.2019.01.002
    [14] N. Boumaza, G. Billel, General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term, J. Math. Anal. Appl., 489 (2020), 1-18.
    [15] X. Shao, Global existence and blowup for a Kirchhoff-type hyperbolic problem with logarithmic nonlinearity, Appl. Math. Optim., 7 (2020), 1-38.
    [16] Y. Yang, X. Tian, M. Zhang, J. Shen, Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian, Electron. J. Differ. Equ., 155 (2018), 1-22.
    [17] R. Jiang, J. Zhou, Blowup and global existence of solutions to a parabolic equation associated with the fraction $p$-Laplacian, Commun. Pure Appl. Anal., 18 (2019), 1205-1226. doi: 10.3934/cpaa.2019058
    [18] M. Xiang, P. Pucci, Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional $p$-Laplacian in R-N, Calc. Var. Partial Differ. Equ., 54 (2015), 2785-2806. doi: 10.1007/s00526-015-0883-5
    [19] D. Idczak, Sensitivity of a nonlinear ordinary BVP with fractional Dirichlet-Laplace operator, Available from: arXivpreprintarXiv, 2018, 1812.11515.
    [20] M. Xiang, D. Yang, Nonlocal Kirchhoff problems: Extinction and non-extinction of solutions, J. Math. Anal. Appl., 477 (2019), 133-152. doi: 10.1016/j.jmaa.2019.04.020
    [21] N. Pan, B. Zhang, J. Cao, Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian, Nonlinear Anal. Real World Appl., 37 (2017), 56-70. doi: 10.1016/j.nonrwa.2017.02.004
    [22] P. Dimitri, On the Evolutionary Fractional $p$-Laplacian, Appl. Math. Res. Exp., 2 (2015), 235-273.
    [23] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. doi: 10.3934/dcds.2013.33.2105
    [24] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. Theory Methods Appl., 94 (2014), 156-170. doi: 10.1016/j.na.2013.08.011
    [25] D. Lu, S. Peng, On nonlinear fractional Schrodinger equations with Hartree-type nonlinearity, Appl. Anal., 97 (2018), 255-278. doi: 10.1080/00036811.2016.1260708
    [26] L. Chen, W. Liu, Existence of solutions to boundary value problem with $p$-Laplace operator for a coupled system of nonlinear fractional differential equations, J. Hubei Univ. Natural Sci., 35 (2013), 48-51.
    [27] G. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol. Nat., 16 (2017), 288-297.
    [28] T. Boudjeriou, Stability of solutions for a parabolic problem involving fractional $p$-Laplacian with logarithmic nonlinearity, Mediterr. J. Math., 17 (2020), 162-186. doi: 10.1007/s00009-020-01584-6
    [29] J. Liu, J. Liao, H. Pan, Multiple positive solutions for a Kirchhoff type equation involving two potentials, Math. Methods Appl., 43 (2020), 10346-10356. doi: 10.1002/mma.6702
    [30] L. X. Truong, The Nehari manifold for fractional p Laplacian equation with logarithmic nonlinearity on whole space, Comput. Math. Appl., 78 (2019), 3931-3940. doi: 10.1016/j.camwa.2019.06.024
    [31] A. Ardila, H. Alex, Existence and stability of standing waves for nonlinear fractional Schrodinger equation with logarithmic nonlinearity. Nonlinear Anal., 155 (2017), 52-64. doi: 10.1016/j.na.2017.01.006
    [32] X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. doi: 10.1088/0951-7715/26/2/479
    [33] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1936) PDF downloads(88) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog