Research article

Fixed point theorems for weakly compatible mappings under implicit relations in quaternion valued $G$-metric spaces

  • Received: 04 August 2020 Accepted: 16 November 2020 Published: 08 December 2020
  • MSC : 47H10, 55H02

  • In this paper, we established some common fixed point theorems of four self-mappings in completed quaternion valued $G-$metric space. Moreover, we gave an example of completed quaternion valued $G-$metric space and example for supporting our main results. The results obtained in this paper extend and improve some recent results.

    Citation: Mohamed Gamal, Watcharaporn Cholamjiak. Fixed point theorems for weakly compatible mappings under implicit relations in quaternion valued $G$-metric spaces[J]. AIMS Mathematics, 2021, 6(3): 2048-2058. doi: 10.3934/math.2021125

    Related Papers:

  • In this paper, we established some common fixed point theorems of four self-mappings in completed quaternion valued $G-$metric space. Moreover, we gave an example of completed quaternion valued $G-$metric space and example for supporting our main results. The results obtained in this paper extend and improve some recent results.



    加载中


    [1] O. K. Adewale, J. O. Olaleru, H. Akewe, Fixed point theorems on a quaterni spaces, Commun. Nonlinear Anal., 1 (2019), 73–81.
    [2] R. P. Agarwal, E. Karapinar, D. O'Regan, A. F. Roldan-Lopez-de-Hierro, Fixed point theory in metric type space, Springer International Publishing Switzerland 2015.
    [3] R. P. Agarwal, Z. Kadelburg, S. Radenović, On coupled fixed point results in asymmetric G-metric spaces, J. Inequal. Appl., 2013 (2013), 528. doi: 10.1186/1029-242X-2013-528
    [4] A. E. Ahmed, A. J. Asad, S. Omran, Fixed point theorems in quaternion-valued metric spaces, Abstr. Appl. Anal., 2014 (2014), Article ID 258–985.
    [5] S. Aleksić, Z. Kadelburg, Z. D. Mitrović, S. Radenović, A new survey: Cone metric spaces, J. Inter. Math. Virtual Inst., 9 (2019), 93–121.
    [6] W. M. Alfaqih, M. Imdad, F. Rouzkard, Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications, Bol. Soc. Paran. Mat., 38 (2020), 9–29.
    [7] F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Research Notes in Mathematics, Pitman, Boston, Mass, USA, (76) 1982.
    [8] F. F. Bonsall, Lecture on some fixed point theorems of functional analysis, Tata Institute Of Fundamental Research, Bombay, 1962.
    [9] W. Cholamjiak, S. Suantai, Y. J. Cho, Fixed points for nondpreading-type multi-valued mappings: Existence and convergence results, Ann. Acad. Rom. Sci. Ser. Math. Apll., 10 (2), 838–844.
    [10] P. Cholamjiak, W. Cholamjiak, Fixed point theorems for hybrid multivalued mappings in Hilbert spaces, J. Fixed Point Theory Appl., 18 (2016), 673–688. doi: 10.1007/s11784-016-0302-3
    [11] B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329–336.
    [12] B. C. Dhage, Generalized metric spaces and topological structure–I, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 46 (2000), 3–24.
    [13] B. C. Dhage, On generalized metric spaces and topological structure–II, Pure Appl. Math. Sci., 40 (1994), 37–41.
    [14] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. doi: 10.1002/mana.19630260109
    [15] S. Gähler, Zur geometric 2-metriche raume, Rev. Roum. Math. Pures Appl., 11 (1966), 664–669.
    [16] K. Gurlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space, Birkhäuser, Basel, Switzerland, 2008.
    [17] K. Gurlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley & Sons, Chichester, UK, 1997.
    [18] W. R. Hamilton, On a new system of imaginaries in algebra, London, Edinburgh Dublin Philos. Mag. J. Sci., (1843), 1844–1850.
    [19] A. Mohammed, A. Al-Ahmadi, Quaternion-valued generalized metric spaces and m-quaternionvalued m-isometric mapping, Int. J. Pure Appl. Math., 116 (2017), 875–897.
    [20] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009, Article ID 917175, 10.
    [21] V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer Nature Switzerland AG, 2019.
    [22] V. Todorčević, Subharmonic behavior and quasiconformal mappings, Anal. Math. Phys., 9 (2019), 1211–1225. doi: 10.1007/s13324-019-00308-8
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11101) PDF downloads(45) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog