Citation: Muhammad Adil Khan, Josip Pečarić, Yu-Ming Chu. Refinements of Jensen’s and McShane’s inequalities with applications[J]. AIMS Mathematics, 2020, 5(5): 4931-4945. doi: 10.3934/math.2020315
[1] | Tareq Saeed, Muhammad Adil Khan, Hidayat Ullah . Refinements of Jensen's inequality and applications. AIMS Mathematics, 2022, 7(4): 5328-5346. doi: 10.3934/math.2022297 |
[2] | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen . A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Mathematics, 2020, 5(6): 6404-6418. doi: 10.3934/math.2020412 |
[3] | Asadullah Sohail, Muhammad Adil Khan, Emad Abouel Nasr, Xiaoye Ding . Further improvements of the Jensen inequality in the integral sense by virtue of 6-convexity along with applications. AIMS Mathematics, 2024, 9(5): 11278-11303. doi: 10.3934/math.2024553 |
[4] | Elahe Jaafari, Mohammad Sadegh Asgari, Mohsen Shah Hosseini, Baharak Moosavi . On the Jensen’s inequality and its variants. AIMS Mathematics, 2020, 5(2): 1177-1185. doi: 10.3934/math.2020081 |
[5] | Asadullah Sohail, Muhammad Adil Khan, Xiaoye Ding, Mohamed Sharaf, Mohammed A. El-Meligy . Improvements of the integral Jensen inequality through the treatment of the concept of convexity of thrice differential functions. AIMS Mathematics, 2024, 9(12): 33973-33994. doi: 10.3934/math.20241620 |
[6] | Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch . Refined estimates and generalization of some recent results with applications. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623 |
[7] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[8] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[9] | Waqar Afzal, Khurram Shabbir, Thongchai Botmart . Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $ (h_1, h_2) $-Godunova-Levin functions. AIMS Mathematics, 2022, 7(10): 19372-19387. doi: 10.3934/math.20221064 |
[10] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
It is well-known that the Jensen inequality [1,2,3] for convex function is one of the most famous and important inequalities in the whole theory of inequalities. Recently, the generalizations and improvements for the Jensen inequality have been the subject of much research, it has been generalized to the s-convex [4], co-ordinate convex [5], ϕ-convex [6], α(x)-convex [7] and strongly convex functions [8]. It is worth noting that it is closely related to many other important inequalities such as Cauchy-Schwarz inequalities [9], Ostrowski inequalities [10], Minkowski inequalities [11], Hermite-Hadamard inequalities [12,13,14,15,16,17], Bessel function inequalities [18], Petrović inequalities [19], Pólya-Szegö inequalities [20], exponentially convex inequalities [21], integral inequalities [22,23,24,25,26,27], mean value inequalities [28,29,30,31,32], gamma function inequalities [33], generalized convex functions inequalities [34], generalized trigonometric functions inequalities [35] and so on. The Jensen inequality can be stated as follows.
The inequality
ψ(∑nj=1ζjyj∑nj=1ζj)≤∑nj=1ζjψ(yj)∑nj=1ζj | (1.1) |
holds for all yj∈I and ζj>0 (j=1,2,…,n) if ψ:I→R is a convex function.
The Jensen inequality (1.1) has wild applications in many fields of natural sciences, for example, in optimization theory, statistics, information theory and financial economics [36,37,38].
The main focus of this article is to present several refinements of the generalized Jensen's inequality for the isotonic linear functionals. Before giving Jessen's and McShane's results, we consider the following hypothesis and recall a definition.
Hypothesis H: Suppose that M is a non empty set and L is the class of real-valued functions f:M→R such that
(ⅰ) α1g1+α2g2∈L if g1,g2∈L and α1,α2∈R;
(ⅱ) g∈L if g(z)=1 for all z∈M.
Definition 1.1. The functional G:L→R is said to be an isotonic linear functional if it satisfies the following two conditions:
(ⅰ) G(α1g1+α2g2)=α1G(g1)+α2G(g2) for g1,g2∈L,α1,α2∈R;
(ⅱ) g∈L,g(t)≥0 on M⇒G(g)≥0.
In 1931, Jessen [39] constructed the functional version of the Jensen's inequality for convex functions with one variable. In the following Theorem 1.1, we present an weighted version of the Jessen's inequality.
Theorem 1.1. Let the hypothesis H be true, G:L→R be an isotonic linear functional and ψ:[a,b]→R be a continuous convex function. Then for all f,ϑ∈L such that ϑψ(f),ϑf∈L and G(ϑ)>0, we have G(ϑf)G(ϑ)∈[a,b] and
ψ(G(ϑf)G(ϑ))≤G(ϑψ(f))G(ϑ). | (1.2) |
Inequality (1.2) has been applied to obtain the monotonicity of generalized means. We present those results for means as follows.
Let r∈R. Then the generalization of the classical mean Mr(ϑ,f;G) for isotonic functional G is defined by
Mr(ϑ,f;G)={(G(ϑfr)G(ϑ))1rr≠0,exp(G(ϑlogf)G(ϑ))r=0, | (1.3) |
where f(x)>0 for x∈M, ϑ,ϑfr∈L for r∈R, ϑlogf∈L and G(ϑ)>0.
The following Theorem 1.2 for the monotonicity of the above generalized mean can be found in the literature [40].
Theorem 1.2. Let the hypothesis H be true, f,ϑ be the functions defined on M such that f,ϑ,fr,ϑfr∈L (r∈R) and f(x)>0 for x∈M, and G be an isotonic linear functional defined on L such that G(ϑ)>0. Then the inequality
Ml(ϑ,f;G)≥Mp(ϑ,f;G) | (1.4) |
holds for all p≤l.
Let ϑ,h:[a,b]→R be the functions such that h is strictly monotone and continuous, and ϑh(f)∈L for f∈L with f(x)∈[a,b] and G(ϑ)>0. Then the generalized quasi arithmetic mean is defined by
Mh(ϑ,f;G)=h−1(G(ϑh(f))G(ϑ)). | (1.5) |
The following Theorem 1.3 on the monotonicity of the generalized quasi arithmetic mean is given in [40].
Theorem 1.3. Let the above hypotheses hold and g:[a,b]→R be a strictly monotone and continuous function such that ϑg(f)∈L for f∈L with f(x)∈[a,b] and G(ϑ)>0. Then one has
Mg(ϑ,f;G)≥Mh(ϑ,f;G). | (1.6) |
if g∘h−1 is a convex function.
In 1937, McShane [41] extended the above functional version of Jensen's inequality from convex functions with one variable to the convex functions with several variables. The following Theorem 1.4 is a weighted version of McShane's result.
Theorem 1.4. Let the hypothesis H be true, G:L→R be an isotonic linear functional, C be a convex closed subset of Rn, ψ be a convex and continuous function defined on C, ϕ1(x),ϕ2(x),…,ϕn(x),ϑ(x) be the functions from L such that ϕ(x)=(ϕ1(x),ϕ2(x),…,ϕn(x))∈C for all x∈M, ϑψ(ϕ(x)),ϑϕi∈L (i=1,2,…,n) and G(ϑ)>0. Then one has
ψ(G(ϑϕ1)G(ϑ),G(ϑϕ2)G(ϑ),…,G(ϑϕn)G(ϑ))≤1G(ϑ)G(ϑψ(ϕ1,ϕ2,…,ϕn)). | (1.7) |
The following generalization of Beck's inequality can be found in the literature [40] by using McShane's inequality.
Theorem 1.5. Let the hypothesis H be valid, G:L→R be an isotonic linear functional, ψi:Ii→R (i=1,2,…,n) be continuous and strictly monotonic, τ:I→R be continuous and increasing, and g1,g2,…,gn:M→R and ψ:I1×I2×⋯×In→R be the real-valued functions such that g1(M)⊂I1, g2(M)⊂I2, …, gn(M)⊂In, ψ1(g1),ψ2(g2),…,ψn(gn),τ(ψ(g1,g2,…,gn)),ϑ∈L and G(ϑ)>0. Then the inequality
ψ(Mψ1(ϑ,g1;G),Mψ2(ϑ,g2;G),…,Mψn(ϑ,gn;G))≥Mτ(ϑ,ψ(g1,g2,…,gn);G) | (1.8) |
holds if the function H defined by H(s1,s2,…,sn)=−τ(ψ(ψ−11(s1),ψ−12(s2),…,ψ−1n(sn)) is convex.
Remark 1.1. It is important to note that Beck [42] gave the special case of Theorem 1.5 for discrete functionals with n=2.
The main purpose of the article is to refine the Jessen's and McShane's inequalities associated to certain functions from the linear functions space, improve the generalized means, Hölder and McShane's inequalities, and generalize the Jessen's and McShane's inequalities containing n certain functions.
We first present a refinement of the Jessen's inequality.
Theorem 2.1. Under the assumptions of Theorem 1.1, if u,v∈L such that u(t)+v(t)=1 for t∈M and uϑf,vϑf,uϑ,vϑ∈L with G(uϑ),G(vϑ)>0, then
ψ(G(ϑf)G(ϑ))≤G(uϑ)G(ϑ)ψ(G(uϑf)G(uϑ))+G(vϑ)G(ϑ)ψ(G(vϑf)G(vϑ))≤G(ϑψ(f))G(ϑ). | (2.1) |
Proof. It follows from u(t)+v(t)=1 for t∈M and the linearity of G that
ψ(G(ϑf)G(ϑ))=ψ(G((u+v)ϑf)G(ϑ)) |
=ψ(G(uϑf)G(ϑ)+G(vϑf)G(ϑ)) |
=ψ(G(uϑ)G(ϑ)G(uϑf)G(uϑ)+G(vϑ)G(ϑ)G(vϑf)G(vϑ)) | (2.2) |
and
G(uϑ)G(ϑ)+G(vϑ)G(ϑ)=G(uϑ+vϑ)G(ϑ)=G(ϑ)G(ϑ)=1. |
Making use of the convexity of ψ on the right hand side of inequality (2.2) we obtain
ψ(G(ϑf)G(ϑ))≤G(uϑ)G(ϑ)ψ(G(uϑf)G(uϑ))+G(vϑ)G(ϑ)ψ(G(vϑf)G(vϑ)) | (2.3) |
Applying Jessen's inequality (1.2) on both sides of inequality (2.3), we have
G(uϑ)G(ϑ)ψ(G(uϑf)G(uϑ))+G(vϑ)G(ϑ)ψ(G(vϑf)G(vϑ)) |
≤G(uϑ)G(ϑ)G(uϑψ(f))G(uϑ)+G(vϑ)G(ϑ)G(vϑψ(f))G(vϑ) |
=G(uϑψ(f))G(ϑ)+G(vϑψ(f))G(ϑ)=G(ϑψ(f))G(ϑ). | (2.4) |
Therefore, inequality (2.1) follows from inequalities (2.3) and (2.4).
From Theorem 2.1 we get Corollary 2.1, which is the refinement of inequality (1.4).
Corollary 2.1. Let the hypothesis H be valid, f,ϑ,u,v be the functions defined on M such that f,ϑ,u,v,uϑ,vϑ,uϑfr,vϑfrϑfr∈L (r∈R) and f(x)>0 for x∈M, G be an isotonic linear functional on L such that G(ϑ),G(uϑ),G(vϑ)>0, u(x)+v(x)=1 for x∈M, p,l∈R with p≤l. Then one has
Ml(ϑ,f;G)≥[M1(ϑ,u;G)Mlp(uϑ,f;G) |
+M1(ϑ,v;G)Mlp(vϑ,f;G)]1l≥Mp(ϑ,f;G) | (2.5) |
for l≠0,
M0(ϑ,f;G)≥exp(M1(ϑ,u;G)logMp(uϑ,f;G) |
+M1(ϑ,v;G)logMp(vϑ,f;G))≥Mp(ϑ,f;G) | (2.6) |
for p≤0,
Mp(ϑ,f;G)≤[M1(ϑ,u;G)Mpl(uϑ,f;G) |
+M1(ϑ,v;G)Mpl(vϑ,f;G)]1p≤Ml(ϑ,f;G) | (2.7) |
for p≠0, and
M0(ϑ,f;G)≤exp(M1(ϑ,u;G)logMl(uϑ,f;G) |
+M1(ϑ,v;G)logMl(vϑ,f;G))≤Ml(ϑ,f;G) | (2.8) |
for l≥0.
Proof. Let p,l≠0. Then using (2.1) for ψ(z)=zlp (z>0), f→fp and taking the power 1l we get inequality (2.5).
Next, we prove inequality (2.6) by taking limit l→0 in (2.5). Let
B(l,p,ϑ,u,v,f;G)=M1(ϑ,u;G)Mlp(uϑ,f;G)+M1(ϑ,v;G)Mlp(vϑ,f;G). |
Then it follows from linearity of G and u+v=1 that
B(0,p,ϑ,u,v,f;G)=M1(ϑ,u;G)+M1(ϑ,v;G)=G(ϑu)G(ϑ)+G(ϑv)G(ϑ) |
=G(ϑu)+G(ϑv)G(ϑ)=G(ϑ(u+v))G(ϑ)=1. |
Let
K(l,B)=(B(l,p,ϑ,u,v,f;G))1l. |
Then
log(K(l,B))=logB(l,p,ϑ,u,v,f;G)l. |
Taking l→0 and using l'Hôpital rule we obtain
liml→0log(K(l,B))=M1(ϑ,u;G)logMp(uϑ,f;G)+M1(ϑ,v;G)logMp(vϑ,f;G), |
that is
liml→0K(l,B)=exp(M1(ϑ,u;G)logMp(uϑ,f;G)+M1(ϑ,v;G)logMp(vϑ,f;G)). | (2.9) |
Taking l→0 in (2.5) and using (2.9) we obtain the desired inequality (2.6).
Similarly utilizing inequality (2.1) for ψ(z)=zpl, (z>0,p,l≠0), f→fl and taking power 1p we get (2.7). Taking p→0 in (2.7) leads to (2.8)
As an application of Theorem 2.1, we derive an refinement of inequality inequality (1.5).
Corollary 2.2. Let all the above hypotheses hold, g:[a,b]→R be a strictly monotone and continuous function such that ϑg(f)∈L for f∈L with f(x)∈[a,b], u,v∈L such that u(x)+v(x)=1 for x∈M and G(ϑ),G(uϑ),G(vϑ)>0. Then the inequality
Mg(ϑ,f;G)≥g−1(M1(ϑ,u;G)g(Mh(ϑu,f;G)) |
+M1(ϑ,v;G)g(Mh(ϑv,f;G)))≥Mh(ϑ,f;G) | (2.10) |
holds if g∘h−1 is a convex function.
Proof. Inequality (2.10) can be derived by use of inequality (2.1) for f→h∘f and ψ→g∘h−1.
As applications of Theorem 2.1, we present the refinements of the Hölder inequality in the following Corollaries 2.3 and 2.4.
Corollary 2.3. Let the hypothesis H be valid, G:L→R be an isotonic linear functional, r1>1, r2=r1r1−1, u,v,w,g1 and g2 be non-negative functions defined on M such that wgr11,wgr22,uwgr22,vwgr22,uwg1g2,vwg1g2,wg1g2∈L and u(x)+v(x)=1 for x∈M. Then
G(wg1g2)≤G1r2(wgr22){(G(uwgr22))1−r1(G(uwg1g2))r1 |
+(G(vwgr22))1−r1(G(vwg1g2))r1}1r1 |
≤G1r1(wgr11)G1r2(wgr22). | (2.11) |
In the case of 0<r1<1 and r2=r1r1−1 with G(wgr22)>0 or r1<0 and G(wgr11)>0, we have
G(wg1g2)≥G1r2(uwgr22)G1r1(uwgr11)+G1r2(vwgr22)G1r1(vwgr11) |
≥G1r1(wgr11)G1r2(wgr22). | (2.12) |
Proof. Assume that G(wgr22)>0. Since wgr22g1g−r2r12=wg1g2∈L and wgr22gr11g−r22=wgr11∈L, therefore by using Theorem 2.1 for ψ(z)=zr1 (z>0,r1>1), ϑ=wgr22, f=g1g−r2r12, we obtain inequality (2.11). If G(wgr11)>0, then applying the same procedure but taking r1,r2,g1,g2 instead of r2,r1,g2,g1, we also obtain inequality (2.11).
If G(wgr22)=G(wgr11)=0, then as we know that
0≤wg1g2≤1r1wgr11+1r2wgr22. | (2.13) |
It gives that G(wg1g2)=0. The proof for the case r1>1 is completed.
If 0<r1<1, then M=1r1>1, and the desired result can be obtained by using (2.11) for M, N=(1−r1)−1, ¯g1=(g1g2)r1, and ¯g2=g−r12 instead of r1, r2, g1 and g2,
Finally, if r1<0, then 0<r2<1, we may use the similar arguments with r1, r2, g1, g2 replaced by r2, r1, g2, g1 provided that G(wgr11)>0 to get the desired result.
Corollary 2.4. Let the hypothesis H be true, G:L→R be an isotonic linear functional, r1>1, r2=r1r1−1, u,v,w,g1 and g2 be non-negative functions defined on M such that wgr11,wgr22,uwgr22,vwgr22,uwg1g2,vwg1g2,wg1g2∈L and u(x)+v(x)=1 for x∈M. Then
G(wg1g2)≤G1r1(uwgr11)G1r2(uwgr22)+G1r1(vwgr11)G1r2(vwgr22) |
≤G1r1(wgr11)G1r2(wgr22). | (2.14) |
In the case of 0<r1<1 and r2=r1r1−1 with G(wgr22)>0 or r1<0 and G(wgr11)>0, we get
G1r1(wgr11)G1r2(wgr22) |
≤G1r2(wgr22){(G(uwgr22))1−r1(G(uwg1g2))r1 |
+(G(vwgr22))1−r1(vwg1g2))r1}1r1≤G(wg1g2). | (2.15) |
Proof. If G(wgr22)>0, then let ψ(z)=−z1r1 (z>0,r1>1), we clearly see that the function ψ is convex. Therefore, using Theorem 2.1 for ψ(z)=−z1r1, ϑ=wgr22 and f=gr11g−r22 we obtain (2.14). If G(wgr11)>0, then applying the same procedure but taking r1, r2, g1 and g2 instead of r2, r1, g2 and g1 we also get (2.14).
For the case of G(wgr22)=G(wgr11)=0, we can complete the proof by use of the similar argument as in the proof of Corollary 2.3.
If 0<r1<1, then M=1r1>1 and applying (2.14) for M and N=(1−r1)−1, ¯g1=(g1g2)r1 and ¯g2=g−r12 instead of r1, r2, g1 and g2 we get (2.15).
Finally, if r1<0, then 0<r2<1, and we can get the desired result if we use the same method as above but instead r1, r2, g1 and g2 by r2, r1, g2 and g1 provided that ∫baw(ϱ)gr11(ϱ)dϱ>0.
Remark 2.1. In the above results if we consider G(ϑg)=∫bap(x)f(x)dx and G(ϑ)=∫bap(x)dx, then we obtain the results presented in [43], where p,g:[a,b]→R are integrable functions with p(x)>0 for x∈[a,b].
We begin this section by giving a refinement of the McShane's inequality.
Theorem 3.1. Under the assumptions of Theorem 1.4, if u,v∈L such that u(x)+v(x)=1 for x∈M and ϑψ(ϕ(x)),uϑϕi,vϑϕi,uϑ,vϑ∈L (i=1,2,…,n) with G(uϑ),G(vϑ)>0, then
ψ(G(ϑϕ1)G(ϑ),G(ϑϕ2)G(ϑ),⋯,G(ϑϕn)G(ϑ)) |
≤G(uϑ)G(ϑ)ψ(G(uϑϕ1)G(uϑ),⋯,G(uϑϕn)G(uϑ))+G(vϑ)G(ϑ)ψ(G(vϑϕ1)G(vϑ),⋯,G(vϑϕn)G(vϑ)) |
≤1G(ϑ)G(ϑψ(ϕ1,ϕ2,⋯,ϕn). | (3.1) |
Proof. It follows from the convexity, (1.7), u(x)+v(x)=1 for x∈M and the linearity of G that
ψ(G(ϑϕ1)G(ϑ),G(ϑϕ2)G(ϑ),⋯,G(ϑϕn)G(ϑ)) |
=ψ(G(uϑϕ1)G(ϑ)+G(vϑϕ1)G(ϑ),⋯,G(uϑϕn)G(ϑ)+G(vϑϕn)G(ϑ)) |
=ψ(G(uϑ)G(ϑ)G(uϑϕ1)G(uϑ)+G(vϑ)G(ϑ)G(vϑϕ1)G(vϑ),⋯,G(uϑ)G(ϑ)G(uϑϕn)G(uϑ)+G(vϑ)G(ϑ)G(vϑϕn)G(vϑ)) |
=ψ(G(uϑ)G(ϑ)(G(uϑϕ1)G(uϑ),⋯,G(uϑϕn)G(uϑ))+G(vϑ)G(ϑ)(G(vϑϕ1)G(vϑ),⋯,G(vϑϕn)G(vϑ))) |
≤G(uϑ)G(ϑ)ψ(G(uϑϕ1)G(uϑ),⋯,G(uϑϕn)G(uϑ))+G(vϑ)G(ϑ)ψ(G(vϑϕ1)G(vϑ),⋯,G(vϑϕn)G(vϑ)) |
≤1G(ϑ)G(uϑψ(ϕ1,ϕ1,⋯,ϕn)+1G(ϑ)G(vϑψ(ϕ1,ϕ1,⋯,ϕn) |
=1G(ϑ)G(ϑψ(ϕ1,ϕ2,⋯,ϕn). |
The following Theorem 3.2 provides a refinement of the generalized Beck's inequality (1.8).
Theorem 3.2. Let the hypothesis H be valid, G:L→R be an isotonic linear functional, ψi:Ii→R (i=1,2,…,n) be continuous and strictly monotonic, τ:I→R be a continuous and increasing function, g1,g2,⋯,gn:M→R, ψ:I1×I2×⋯×In→R be the real-valued functions such that g1(M)⊂I1, g2(M)⊂I2, ⋯, gn(M)⊂In, ψ1(g1), ψ2(g2), ⋯, ψn(gn), τ(ψ(g1,g2,…,gn)), u,v,ϑ,uϑ,vϑ∈L, u(x)+v(x)=1 for x∈M and G(ϑ),G(uϑ),G(vϑ)>0. Then
ψ(Mψ1(ϑ,g1;G),Mψ2(ϑ,g2;G),…,Mψn(ϑ,gn;G)) |
≥τ−1[G(uϑ)G(ϑ)τ(ψ(Mψ1(uϑ,g1;G),⋯,Mψn(uϑ,gn;G))) |
+G(vϑ)G(ϑ)τ(ψ(Mψ1(vϑ,g1;G),⋯,Mψn(vϑ,gn;G)))] |
≥Mτ(ϑ,ψ(g1,g2,…,gn);G) | (3.2) |
if the function H defined by H(s1,s2,⋯,sn)=−τ(ψ(ψ−11(s1),ψ−12(s2),⋯,ψ−1n(sn)) is convex.
Proof. Applying Theorem 3.2 for the function H instead of ψ, we obtain
τ(ψ(ψ−11(G(ϑϕ1)G(ϑ)),ψ−12(G(ϑϕ2)G(ϑ)),…,ψ−1n(G(ϑϕn)G(ϑ)))) |
≥G(uϑ)G(ϑ)τ(ψ(ψ−11(G(uϑϕ1)G(uϑ)),…,ψ−1n(G(uϑϕn)G(uϑ)))) |
+G(vϑ)G(ϑ)τ(ψ(ψ−11(G(vϑϕ1)G(vϑ)),…,ψ−1n(G(vϑϕn)G(vϑ)))) |
≥1G(ϑ)G(ϑτ(ψ(ψ−11(ϕ1),ψ−12(ϕ2),⋯,ψ−1n(ϕn))). | (3.3) |
Let ϕi=ψi(gi) (i=1,2,…,n). Then (3.3) becomes
τ(ψ(Mψ1(ϑ,g1;G),Mψ2(ϑ,g2;G),⋯,Mψn(ϑ,gn;G))) |
≥G(uϑ)G(ϑ)τ(ψ(Mψ1(uϑ,g1;G),⋯,Mψn(uϑ,gn;G))) |
+G(vϑ)G(ϑ)τ(ψ(Mψ1(vϑ,g1;G),⋯,Mψn(vϑ,gn;G))) |
≥1G(ϑ)G(ϑτ(ψ(g1,g2,…,gn))), | (3.4) |
which is equivalent to (3.2).
A refinement of the Beck's inequality is given in the following Corollary 3.1.
Corollary 3.1. Under the assumptions of Theorem 3.2 for n=2, we have the following inequalities
ψ(Mψ1(ϑ,g1;G),Mψ2(ϑ,g2;G)) |
≥τ−1[G(uϑ)G(ϑ)τ(ψ(Mψ1(uϑ,g1;G),Mψ2(uϑ,g2;G))) |
+G(vϑ)G(ϑ)τ(ψ(Mψ1(vϑ,g1;G),Mψ2(vϑ,g2;G)))] |
≥Mτ(ϑ,ψ(g1,g2);G) | (3.5) |
if the function H defined by H(s1,s2)=−τ(ψ(ψ−11(s1),ψ−12(s2)) is convex.
Next, we discuss some particular cases of Corollary 3.1.
Corollary 3.2. Let all the assumptions of Theorem 3.2 hold for n=2 with ψ(z1,z2)=z1+z2, and ψ1,ψ2,τ be the twice continuous differentiable functions such that ψ′1, ψ′2, τ′, ψ′′1, ψ′′2 and τ′′ are positive. Then the inequality
Mψ1(ϑ,g1;G)+Mψ2(ϑ,g2;G) |
≥τ−1[G(uϑ)G(ϑ)τ(Mψ1(uϑ,g1;G)+Mψ2(uϑ,g2;G)) |
+G(vϑ)G(ϑ)τ(Mψ1(vϑ,g1;G)+Mψ2(vϑ,g2;G))] |
≥Mτ(ϑ,g1+g2;G) | (3.6) |
holds if G(z1)+H(z2)≤K(z1+z2), where G=ψ′1ψ′′1, H=ψ′2ψ′′2 and K=τ′τ′′.
Proof. The idea of the proof is similar to the proof of Corollary 3.2 given in [44].
Similar to the idea of Corollary 3.2, we state the following Corollary 3.3.
Corollary 3.3. Let all the assumptions of Theorem 3.2 hold for n=2 with ψ(z1,z2)=z1z2, ψ1,ψ2,τ be the twice continuous differentiable functions and L1(z)=ψ′1(z)ψ′1(z)+zψ′′1(z), L2(z)=ψ′2(z)ψ′2(z)+zψ′′2(z), L3(z)=τ′(z)τ′(z)+zτ′′(z) such that ψ′1, ψ′2, τ′, τ′′, ψ′′1, ψ′′2, L1, L2, L3 are positive. Then the inequality
Mψ1(ϑ,g1;G)Mψ2(ϑ,g2;G) |
≥τ−1[G(uϑ)G(ϑ)τ(Mψ1(uϑ,g1;G)Mψ2(uϑ,g2;G)) |
+G(vϑ)G(ϑ)τ(Mψ1(vϑ,g1;G)Mψ2(vϑ,g2;G))] |
≥Mτ(ϑ,g1g2;G) | (3.7) |
holds if L1(z1)+L2(z2)≤L3(z1z2).
The following Theorem 4.1 provides further generalization for the refinement of the Jessen's inequality associated to n certain functions.
Theorem 4.1. Let all the assumptions of Theorem 1.1 hold, ul∈L such that n∑l=1ul=1 and ulϑf,ulϑ∈L with G(ulϑ)>0 for all l∈{1,2,⋯,n}, and S1,S2⊂{1,2,…,n} such that S1 and S2 are non empty, S1∩S2=∅ and S1∪S2={1,2,…,n}. Then one has
ψ(G(ϑf)G(ϑ))≤G(∑l∈S1ulϑ)G(ϑ)ψ(G(∑l∈S1ulϑf)G(∑l∈S1ulϑ)) |
+G(∑l∈S2ulϑ)G(ϑ)ψ(G(∑l∈S2ulϑf)G(∑l∈S2ulϑ))≤G(ϑψ(f))G(ϑ). |
Proof. It follows from the linearity of G, n∑l=1ul=1, Jessen's inequality and the definition of the convexity that
ψ(G(ϑf)G(ϑ))=ψ(G(n∑l=1ulϑf)G(ϑ))=ψ(G(∑l∈S1ulϑf+∑l∈S2ulϑf)G(ϑ)) |
=ψ(G(∑l∈S1ulϑf)+G(∑l∈S2ulϑf)G(ϑ)) |
=ψ(G(∑l∈S1ulϑ)G(ϑ)G(∑l∈S1ulϑf)G(∑l∈S1ulϑ)+G(∑l∈S2ulϑ)G(ϑ)G(∑l∈S2ulϑf)G(∑l∈S2ulϑ)) |
and
ψ(G(ϑf)G(ϑ))≤G(∑l∈S1ulϑ)G(ϑ)ψ(G(∑l∈S1ulϑf)G(∑l∈S1ulϑ))+G(∑l∈S2ulϑ)G(ϑ)ψ(G(∑l∈S2ulϑf)G(∑l∈S2ulϑ)) |
≤G(∑l∈S1ulϑ)G(ϑ)G(∑l∈S1ulϑψ(f))G(∑l∈S1ulϑ)+G(∑l∈S2ulϑ)G(ϑ)G(∑l∈S2ulϑψ(f))G(∑l∈S2ulϑ) |
=G(∑l∈S1ulϑψ(f))G(ϑ)+G(∑l∈S2ulϑψ(f))G(ϑ) |
=G(∑l∈S1ulϑψ(f)+∑l∈S2ulϑψ(f))G(ϑ)=G(ϑψ(f))G(ϑ). |
Similar to the above Theorem 4.1, in the following Theorem 4.2 we give further generalization of the McShane's inequality.
Theorem 4.2. Let all the assumptions of Theorem 1.4 hold, ul∈L such that n∑l=1ul=1 and ulϑψ(ϕ(x)), vlϑψ(ϕ(x)), ulϑϕl, ulϑ∈L with G(ulϑ)>0 for all l∈{1,2,⋯,n}, and S1 and S2 are non empty and disjoint subsets of {1,2,⋯,n} such that S1∪S2={1,2,⋯,n}. Then
ψ(G(ϑϕ1)G(ϑ),G(ϑϕ2)G(ϑ),⋯,G(ϑϕn)G(ϑ)) |
≤∑l∈S1G(ulϑ)G(ϑ)ψ(∑l∈S1G(ulϑϕ1)∑l∈S1G(ulϑ),⋯,∑l∈S1G(ulϑϕn)∑l∈S1G(ulϑ)) |
+∑l∈S2G(vlϑ)G(ϑ)ψ(∑l∈S2G(vlϑϕ1)∑l∈S2G(vlϑ),⋯,∑l∈S2G(vlϑϕn)∑l∈S2G(vlϑ)) |
≤1G(ϑ)G(ϑψ(ϕ1,ϕ2,…,ϕn)). |
Proof. It follows from (1.7), ∑nl=1ul(x)=1 for x∈M, the linearity of G and the definition of the convexity that
ψ(G(ϑϕ1)G(ϑ),G(ϑϕ2)G(ϑ)⋯,G(ϑϕn)G(ϑ)) |
=ψ(∑l∈S1G(ulϑϕ1)G(ϑ)+∑l∈S2G(vlϑϕ1)G(ϑ),⋯,∑l∈S1G(ulϑϕn)G(ϑ)+∑l∈S2G(vlϑϕn)G(ϑ)) |
=ψ(∑l∈S1G(ulϑ)G(ϑ)∑l∈S1G(ulϑϕ1)∑l∈S1G(ulϑ)+∑l∈S2G(vlϑ)G(ϑ)∑l∈S2G(vlϑϕ1)∑l∈S2G(vlϑ),⋯, |
∑l∈S1G(ulϑ)G(ϑ)∑l∈S1G(ulϑϕn)∑l∈S1G(ulϑ)+∑l∈S2G(vlϑ)G(ϑ)∑l∈S2G(vlϑϕn)∑l∈S2G(vlϑ)) |
=ψ(∑l∈S1G(ulϑ)G(ϑ)(∑l∈S1G(ulϑϕ1)∑l∈S1G(ulϑ),⋯,G(∑l∈S1ulϑϕn)∑l∈S1G(ulϑ)) |
+∑l∈S2G(vlϑ)G(ϑ)(∑l∈S2G(vlϑϕ1)∑l∈S2G(vlϑ),⋯,∑l∈S2G(vlϑϕn)∑l∈S2G(vlϑ))) |
≤∑l∈S1G(ulϑ)G(ϑ)ψ(∑l∈S1G(ulϑϕ1)∑l∈S1G(ulϑ),…,∑l∈S1G(ulϑϕn)∑l∈S1G(ulϑ)) |
+∑l∈S2G(vlϑ)G(ϑ)ψ(∑l∈S2G(vlϑϕ1)∑l∈S2G(vlϑ),⋯,∑l∈S2G(vlϑϕn)∑l∈S2G(vlϑ)) |
≤1G(ϑ)G(∑l∈S1ulϑψ(ϕ1,ϕ1,…,ϕn))+1G(ϑ)G(∑l∈S2vlϑψ(ϕ1,ϕ1,…,ϕn)) |
=1G(ϑ)G(ϑψ(ϕ1,ϕ2,⋯,ϕn)). |
Remark 4.1. Analogously as in the section 2, we may give some applications of Theorems 4.1 and 4.2.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The research is supported by the Natural Science Foundation of China (Grant No. 61772025).
The authors declare that they have no competing interests.
[1] |
M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[2] |
S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
![]() |
[3] | S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114. |
[4] |
X. S. Chen, New convex functions in linear spaces and Jensen's discrete inequality, J. Inequal. Appl., 2013 (2013), 1-8. doi: 10.1186/1029-242X-2013-1
![]() |
[5] |
S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775-788. doi: 10.11650/twjm/1500574995
![]() |
[6] | G. M. Eshaghi, M. Rostanian Delavar, M. De La Sen, On φ-convex functions, J. Math. Inequal., 10 (2016), 173-183. |
[7] | K. Krulić, J. Pečarić, K. Smoljak, α(x)-convex functions and their inequalities, Bull. Malays. Math. Sci. Soc., 35 (2012), 695-716. |
[8] |
N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193-199. doi: 10.1007/s00010-010-0043-0
![]() |
[9] |
X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
![]() |
[10] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[11] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[12] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20. |
[13] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[14] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[15] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[16] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-20. |
[17] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[18] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[19] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[20] |
S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
![]() |
[21] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mappings with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[22] | S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11. |
[23] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18. |
[24] |
W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[25] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[26] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[27] |
S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
![]() |
[28] |
H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
![]() |
[29] |
W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[30] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[31] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[32] |
B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
![]() |
[33] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[34] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[35] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[36] |
M. Adil Khan, D. Pečarić, J. Pečarić, Bounds for Csiszár divergence and hybrid Zipf-Mandelbrot entropy, Math. Method. Appl. Sci., 42 (2019), 7411-7424. doi: 10.1002/mma.5858
![]() |
[37] | J. G. Liao, A. Berg, Sharpening Jensen's inequality, Am. Stat., 79 (2019), 278-281. |
[38] |
Q. Lin, Jensen inequality for superlinear expectations, Stat. Probab. Lett., 151 (2019), 79-83. doi: 10.1016/j.spl.2019.03.006
![]() |
[39] | B. Jessen, Bemrkninger om konvekse Funktioner og Uligheder imellem Middelvrdier I, Mat. Tidsskr. B, 2 (1931), 17-26. |
[40] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992. |
[41] |
E. J. McShane, Jensen's inequality, B. Am. Math. Soc., 43 (1937), 521-527. doi: 10.1090/S0002-9904-1937-06588-8
![]() |
[42] | E. Beck, Über Ungleichungen von der Form f(Mφ(x; α), Mψ(y; α)) ≥ Mχ(f(x, y); α), Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 320-328 (1970), 1-14. |
[43] |
M. Adil Khan, D. Pečarić, J. Pečarić, New refinement of the Jensen inequality associated to certain functions with applications, J. Inequal. Appl., 2020 (2020), 1-11. doi: 10.1186/s13660-019-2265-6
![]() |
[44] | V. Čuljak, B. Ivanković, J. Pečarić, On Jensen-Mcshane's inequality, Period. Math. Hungar., 58 (2019), 139-154. |
1. | Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375 | |
2. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
3. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable fractional integral inequalities for GG- and GA-convex functions, 2020, 5, 2473-6988, 5012, 10.3934/math.2020322 | |
4. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
5. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
6. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
7. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
8. | Muhammad Adil Khan, Zakir Husain, Yu-Ming Chu, Dan Selişteanu, New Estimates for Csiszár Divergence and Zipf–Mandelbrot Entropy via Jensen–Mercer’s Inequality, 2020, 2020, 1099-0526, 1, 10.1155/2020/8928691 | |
9. | Muhammad Adil Khan, Shahid Khan, Inam Ullah, Khuram Ali Khan, Yu‐Ming Chu, A novel approach to the Jensen gap through Taylor's theorem, 2021, 44, 0170-4214, 3324, 10.1002/mma.6944 | |
10. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
11. | Muhammad Adil Khan, Shahid Khan, Ɖilda Pečarić, Josip Pečarić, New improvements of Jensen’s type inequalities via 4-convex functions with applications, 2021, 115, 1578-7303, 10.1007/s13398-020-00971-8 | |
12. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
13. | Zhong-Xuan Mao, Ya-Ru Zhu, Bao-Hua Guo, Fu-Hai Wang, Yu-Hua Yang, Hai-Qing Zhao, Qi Type Diamond-Alpha Integral Inequalities, 2021, 9, 2227-7390, 449, 10.3390/math9040449 | |
14. | Shahid Khan, Muhammad Adil Khan, Saad Ihsan Butt, Yu-Ming Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02794-8 | |
15. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
16. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
17. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
18. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
19. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
20. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5 | |
21. | Thabet Abdeljawad, Saima Rashid, Hasib Khan, Yu-Ming Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02782-y | |
22. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
23. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
24. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
25. | Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341 | |
26. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
27. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
28. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
29. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
30. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
31. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
32. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
33. | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions, 2023, 8, 2473-6988, 7437, 10.3934/math.2023374 | |
34. | Peide Liu, Muhammad Bilal Khan, Muhammad Aslam Noor, Khalida Inayat Noor, New Hermite–Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, 2022, 8, 2199-4536, 413, 10.1007/s40747-021-00379-w | |
35. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
36. | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman, Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings, 2022, 7, 2473-6988, 15659, 10.3934/math.2022857 | |
37. | Muhammad Bilal Khan, Lazim Abdullah, Muhammad Aslam Noor, Khalida Inayat Noor, New Hermite–Hadamard and Jensen Inequalities for Log-h-Convex Fuzzy-Interval-Valued Functions, 2021, 14, 1875-6883, 10.1007/s44196-021-00004-1 | |
38. | Weerawat Sudsutad, Nantapat Jarasthitikulchai, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications, 2022, 10, 2227-7390, 573, 10.3390/math10040573 | |
39. | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, 2021, 6, 2473-6988, 8001, 10.3934/math.2021465 | |
40. | Muhammad Bilal Khan, Muhammad Aslam Noor, Jorge E. Macías-Díaz, Mohamed S. Soliman, Hatim Ghazi Zaini, Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation, 2022, 55, 2391-4661, 387, 10.1515/dema-2022-0023 | |
41. | Waqar Afzal, Mujahid Abbas, Sayed M. Eldin, Zareen A. Khan, Some well known inequalities for (h1,h2)-convex stochastic process via interval set inclusion relation, 2023, 8, 2473-6988, 19913, 10.3934/math.20231015 | |
42. | Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions, 2024, 9, 2473-6988, 11228, 10.3934/math.2024551 | |
43. | Yuetan Zhao, Limin Wang, Xinyu Zhu, Taosheng Jin, Minghui Sun, Xiongfei Li, Probability knowledge acquisition from unlabeled instance based on dual learning, 2024, 0219-1377, 10.1007/s10115-024-02238-9 | |
44. | Shumaila Rani, Rabia Bibi, Some improvements of McShane and Hölder-type inequalities via superquadratic functions, 2024, 2024, 1029-242X, 10.1186/s13660-024-03221-2 | |
45. | Barış Çelik, Hüseyin Budak, Erhan Set, On generalized Milne type inequalities for new conformable fractional integrals, 2024, 38, 0354-5180, 1807, 10.2298/FIL2405807C |