Citation: Bao Zhang, Xudong Wang, Liu Chen, Xingwu Li. Dynamic behavior of graphene reinforced aluminum composites[J]. AIMS Materials Science, 2018, 5(2): 338-348. doi: 10.3934/matersci.2018.2.338
[1] | Lee C, Wei X, Kysar JW, et al. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385. doi: 10.1126/science.1157996 |
[2] | Balandin AA, Ghosh S, Bao W, et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett 8: 902. doi: 10.1021/nl0731872 |
[3] | Ramanathan T, Abdala AA, Stankovich S, et al. (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechno 3: 327–331. doi: 10.1038/nnano.2008.96 |
[4] | Yazdani B, Xia Y, Ahmad I, et al. (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35: 179–186. doi: 10.1016/j.jeurceramsoc.2014.08.043 |
[5] | Asl MS, Kakroudi MG (2015) Characterization of hot-pressed graphene reinforced ZrB 2 –SiC composite. Mat Sci Eng A 625: 385–392. doi: 10.1016/j.msea.2014.12.028 |
[6] | Wang J, Li Z, Fan G, et al. (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66: 594–597. doi: 10.1016/j.scriptamat.2012.01.012 |
[7] | Xue B, Zhu Q, Shi X, et al. (2016) Microstructure and Functional Mechanism of Friction Layer in Ni 3 Al Matrix Composites with Graphene Nanoplatelets. J Mater Eng Perform, 1–8. |
[8] | Kim Y, Lee J, Yeom MS, et al. (2013) Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat Commun 4: 2114. |
[9] | Rashad M, Pan F, Tang A, et al. (2014) Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J Alloy Compd 603: 111–118. doi: 10.1016/j.jallcom.2014.03.038 |
[10] | Kim WJ, Lee TJ, Han SH (2014) Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69: 55–65. doi: 10.1016/j.carbon.2013.11.058 |
[11] | Cha SI, Kim KT, Arshad SN, et al. (2005) Extraordinary Strengthening Effect of Carbon Nanotubes in Metal‐Matrix Nanocomposites Processed by Molecular‐Level Mixing. Adv Mater 17: 1377–1381. doi: 10.1002/adma.200401933 |
[12] | Tang Y, Yang X, Wang R, et al. (2014) Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater Sci Eng A 599: 247–254. doi: 10.1016/j.msea.2014.01.061 |
[13] | Ahmad I, Islam M, Subhani T, et al. (2015) Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route. J Mater Eng Perform 24: 4236–4243. doi: 10.1007/s11665-015-1738-0 |
[14] | Dreyer DR, Ruoff RS, Bielawski CW (2010) ChemInform Abstract: From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew Chem 49: 9336. doi: 10.1002/anie.201003024 |
[15] | Miracle DB (2005) Metal matrix composites – From science to technological significance. Compos Sci Technol 65: 2526–2540. doi: 10.1016/j.compscitech.2005.05.027 |
[16] | Xu Z, Zhang Q, Shi X, et al. (2015) Comparison of Tribological Properties of NiAl Matrix Composites Containing Graphite, Carbon Nanotubes, or Graphene. J Mater Eng Perform 24: 1926–1936. doi: 10.1007/s11665-015-1482-5 |
[17] | Liang J, Huang Y, Zhang L, et al. (2009) Molecular‐Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Adv Funct Mater 19: 2297–2302. doi: 10.1002/adfm.200801776 |
[18] | Liu J, Yan H, Jiang K (2013) Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int 39: 6215–6221. doi: 10.1016/j.ceramint.2013.01.041 |
[19] | Bartolucci SF, Paras J, Rafiee MA, et al. (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528: 7933–7937. doi: 10.1016/j.msea.2011.07.043 |
[20] | Yan SJ, Dai SL, Zhang XY, et al. (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A 612: 440–444. doi: 10.1016/j.msea.2014.06.077 |
[21] | Saboori A, Novara C, Pavese M (2017) An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy. J Mater Eng Perform 26: 1–7. doi: 10.1007/s11665-016-2478-5 |
[22] | Zhang B, Shim VPW (2010) Effect of strain rate on microstructure of polycrystalline oxygen-free high conductivity copper severely deformed at liquid nitrogen temperature. Acta Mater 58: 6810–6827. doi: 10.1016/j.actamat.2010.09.009 |
[23] | Zhang B, Shim VPW (2010) On the generation of nanograins in pure copper through uniaxial single compression. Phil Mag 90: 3293–3311. doi: 10.1080/14786435.2010.484405 |
[24] | Zhang B, Shim VPW (2010) Determination of inelastic heat fraction of OFHC copper through dynamic compression. Int J Impact Eng 37: 50–68. doi: 10.1016/j.ijimpeng.2009.07.003 |
[25] | Yang LM, Shim VPW (2005) An analysis of stress uniformity in split Hopkinson bar test specimens. Int J Impact Eng 31: 129–150. doi: 10.1016/j.ijimpeng.2003.09.002 |
[26] | Wang H, Wang S, Zheng K, et al. (2016) Effects of SiC Mass Fractions on Microstructure and Properties of SiCp/6061 Aluminum Matrix Composite. Mater Mech Eng 40: 52–56. |
[27] | Tan M, Xin Q, Li Z, et al. (2001) Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. J Mater Sci 36: 2045–2053. doi: 10.1023/A:1017591117670 |
[28] | Boey F, Yuan Z, Khor KA (1998) Mechanical alloying for the effective dispersion of sub-micron SiC p reinforcements in Al–Li alloy composite. Mater Sci Eng A 252: 276–287. doi: 10.1016/S0921-5093(98)00566-8 |
[29] | Devaraju A, Kumar A, Kumaraswamy A, et al. (2013) Influence of reinforcements (SiC and Al2O3 ) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Mater Design 51: 331–341. doi: 10.1016/j.matdes.2013.04.029 |
[30] | Wei Y, Bower AF, Gao H (2008) Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater 56: 1741–1752. doi: 10.1016/j.actamat.2007.12.028 |
[31] | Picu RC, Vincze G, Ozturk F, et al. (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A 390: 334–343. doi: 10.1016/j.msea.2004.08.029 |
[32] | Wagoner RH (1981) A technique for measuring strainrate sensitivity. Metall Trans A 12: 71–75. |
[33] | Wang YM, Ma E (2004) Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater Sci Eng A 375–377: 46–52. |
[34] | Wang H, Ramesh KT (2004) Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater 52: 355–367. doi: 10.1016/j.actamat.2003.09.036 |
[35] | Deng H, Nemat-Nasser S (1994) Dynamic Damage Evolution of Solids in Compression: Microcracking, Plastic Flow, and Brittle-Ductile Transition. J Eng Mater Technol 116: 286–289. doi: 10.1115/1.2904289 |