Citation: Stephan A. Brinckmann, Nishant Lakhera, Chris M. Laursen, Christopher Yakacki, Carl P. Frick. Characterization of poly(para-phenylene)-MWCNT solvent-cast composites[J]. AIMS Materials Science, 2018, 5(2): 301-319. doi: 10.3934/matersci.2018.2.301
[1] | Nunes JP, Silva JF, Velosa JC, et al. (2009) New thermoplastic matrix composites for demanding applications. Plast Rubber Compos 38: 167–172. doi: 10.1179/174328909X387946 |
[2] | Dean D, Husband M, Trimmer M (1998) Time–temperature-dependent behavior of a substituted poly(paraphenylene): Tensile, creep, and dynamic mechanical properties in the glassy state. J Polym Sci Pol Phys 36: 2971–2979. |
[3] | Friedrich K, Burkhart T, Almajid AA, et al. (2010) Poly-Para-Phenylene-Copolymer (PPP): A High-Strength Polymer with Interesting Mechanical and Tribological Properties. Int J Polym Mater Po 59: 680–692. doi: 10.1080/00914037.2010.483211 |
[4] | Frick CP, DiRienzo AL, Hoyt AJ, et al. (2014) High-strength poly(para-phenylene) as an orthopedic biomaterial. J Biomed Mater Res A 102: 3122–3129. doi: 10.1002/jbm.a.34982 |
[5] | Hoyt AJ, Yakacki CM, Fertig III RS, et al. (2015) Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications. J Mech Behav Biomed 41: 136–148. doi: 10.1016/j.jmbbm.2014.10.004 |
[6] | DiRienzo AL, Yakacki CM, Frensemeier M, et al. (2014) Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications. J Mech Behav Biomed 30: 347–357. doi: 10.1016/j.jmbbm.2013.10.012 |
[7] | Collins DA, Yakacki CM, Lightbody D, et al. (2016) Shape-memory behavior of high-strength amorphous thermoplastic poly(para-phenylene). J Appl Polym Sci 133: 1–10. |
[8] | Almajid A, Friedrich K, Noll A, et al. (2013) Poly-para-phenylene-copolymers (PPP) for extrusion and injection moulding Part 1——molecular and rheological differences. Plast Rubber Compos 42: 123–128. doi: 10.1179/1743289812Y.0000000045 |
[9] | Pei X, Friedrich K (2012) Sliding wear properties of PEEK, PBI and PPP. Wear 274–275: 452–455. |
[10] | Ma Y, Cong P, Chen H, et al. (2015) Mechanical and Tribological Properties of Self-Reinforced Polyphenylene Sulfide Composites. J Macromol Sci B 54: 1169–1182. doi: 10.1080/00222348.2015.1061845 |
[11] | Ribeiro B, Pipes RB, Costa ML, et al. (2017) Electrical and rheological percolation behavior of multiwalled carbon nanotube-reinforced poly(phenylene sulfide) composites. J Compos Mater 51: 199–208. doi: 10.1177/0021998316644848 |
[12] | Mahat KB, Alarifi I, Alharbi A, et al. (2016) Effects of UV Light on Mechanical Properties of Carbon Fiber Reinforced PPS Thermoplastic Composites. Macromol Symp 365: 157–168. doi: 10.1002/masy.201650015 |
[13] | Kuo MC, Huang JC, Chen M, et al. (2003) Fabrication of High Performance Magnesium/Carbon-Fiber/PEEK Laminated Composites. Mater Trans 44: 1613–1619. doi: 10.2320/matertrans.44.1613 |
[14] | Martin AC, Lakhera N, DiRienzo AL, et al. (2013) Amorphous-to-crystalline transition of Polyetheretherketone-carbon nanotube composites via resistive heating. Compos Sci Technol 89: 110–119. doi: 10.1016/j.compscitech.2013.09.012 |
[15] | Garcia-Gonzalez D, Rusinek A, Jankowiak T, et al. (2015) Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos Struct 124: 88–99. doi: 10.1016/j.compstruct.2014.12.061 |
[16] | Bishop MT, Karasz FE, Russo PS, et al. (1985) Solubility and Properties of a Poly(aryl ether ketone) in Strong Acids. Macromolecules 18: 86–93. doi: 10.1021/ma00143a014 |
[17] | Shukla D, Negi YS, Kumar V (2013) Modification of Poly(ether ether ketone) Polymer for Fuel Cell Application. J Appl Chem 2013. |
[18] | Wang X, Li Z, Zhang M, et al. (2017) Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation. RSC Adv 7: 10503–10516. doi: 10.1039/C6RA28762J |
[19] | Natori I, Natori S, Sekikawa H, et al. (2008) Synthesis of soluble poly(para-phenylene) with a long polymer chain: Characteristics of regioregular poly(1,4-phenylene). J Polym Sci Pol Chem 46: 5223–5231. doi: 10.1002/pola.22851 |
[20] | Marvel CS, Hartzell GE (1959) Preparation and Aromatization of Poly-1,3-cyclohexadiene1. J Am Chem Soc 81: 448–452. doi: 10.1021/ja01511a047 |
[21] | Cochet M, Maser WK, Benito AM, et al. (2001) Synthesis of a new polyaniline/nanotube composite: "in-situ" polymerisation and charge transfer through site-selective interaction. Chem Commun 1450–1451. |
[22] | Olifirov LK, Kaloshkin SD, Zhang D (2017) Study of thermal conductivity and stress-strain compression behavior of epoxy composites highly filled with Al and Al/f-MWCNT obtained by high-energy ball milling. Compos Part A-Appl S 101: 344–352. doi: 10.1016/j.compositesa.2017.06.027 |
[23] | Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D-Atoms, Molecules and Clusters 27: 93–96. doi: 10.1007/BF01436769 |
[24] | Spitalsky Z, Tasis D, Papagelis K, et al. (2010) Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35: 357–401. doi: 10.1016/j.progpolymsci.2009.09.003 |
[25] | Khare R, Bose S (2005) Carbon Nanotube Based Composites——A Review. J Min Mater Charact Eng 4: 31–46. |
[26] | Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73: 3842–3844. doi: 10.1063/1.122911 |
[27] | Frankland SJV, Caglar A, Brenner DW, et al. (2002) Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. J Phys Chem B 106: 3046–3048. doi: 10.1021/jp015591+ |
[28] | Tsuda T, Ogasawara T, Deng F, et al. (2011) Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Compos Sci Technol 71: 1295–1300. doi: 10.1016/j.compscitech.2011.04.014 |
[29] | Calvert P (1999) Nanotube Composites: A recipe for strength. Nature 399: 210–211. doi: 10.1038/20326 |
[30] | Tasis D, Tagmatarchis N, Bianco A, et al. (2006) Chemistry of carbon nanotubes. Chem Rev 106: 1105–1136. doi: 10.1021/cr050569o |
[31] | Ma PC, Siddiqui NA, Marom G, et al. (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A-Appl S 41: 1345–1367. doi: 10.1016/j.compositesa.2010.07.003 |
[32] | Grady BP (2010) Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol Rapid Comm 31: 247–257. doi: 10.1002/marc.200900514 |
[33] | Jyoti J, Babal AS, Sharma S, et al. (2018) Significant improvement in static and dynamic mechanical properties of graphene oxide-carbon nanotube acrylonitrile butadiene styrene hybrid composites. J Mater Sci 53: 2520–2536. doi: 10.1007/s10853-017-1592-6 |
[34] | Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378–1385. doi: 10.1016/j.carbon.2005.01.007 |
[35] | Shi DL, Feng XQ, Huang YY, et al. (2004) The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J Eng Mater-T ASME 126: 250–257. doi: 10.1115/1.1751182 |
[36] | Fiedler B, Gojny FH, Wichmann MHG, et al. (2006) Fundamental aspects of nano-reinforced composites. Compos Sci Technol 66: 3115–3125. doi: 10.1016/j.compscitech.2005.01.014 |
[37] | Strano MS, Dyke CA, Usrey ML, et al. (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301: 1519–1522. doi: 10.1126/science.1087691 |
[38] | Banerjee S, Kahn MGC, Wong SS (2003) Rational chemical strategies for carbon nanotube functionalization. Chem-Eur J 9: 1898–1908. doi: 10.1002/chem.200204618 |
[39] | Yang K, Gu M, Guo Y, et al. (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47: 1723–1737. doi: 10.1016/j.carbon.2009.02.029 |
[40] | Sahoo NG, Rana S, Cho JW, et al. (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35: 837–867. doi: 10.1016/j.progpolymsci.2010.03.002 |
[41] | Silva JF, Nunes JP, Velosa JC, et al. (2010) Thermoplastic matrix towpreg production. Adv Polym Tech 29: 80–85. doi: 10.1002/adv.20174 |
[42] | Vuorinen A (2010) Rigid Rod Polymers Fillers in Acrylic Denture and Dental Adhesive Resin Systems. |
[43] | Kwok N, Hahn HT (2007) Resistance heating for self-healing composites. J Compos Mater 41: 1635–1654. doi: 10.1177/0021998306069876 |
[44] | Delzeit L, Nguyen CV, Chen B, et al. (2002) Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J Phys Chem B 106: 5629–5635. doi: 10.1021/jp0203898 |
[45] | Caneba G (2010) Product Materials, In: Free-radical retrograde-precipitation polymerization (FRRPP): novel concept, processes, materials, and energy aspects, Springer Science & Business Media, 199–252. |
[46] | Xu Z, Wan L, Huang X (2009) Surface Modification by Graft Polymerization, In: Surface Engineering of Polymer Membranes. Advanced Topics in Science and Technology in China, Springer, Berlin, Heidelberg, 80–149. |
[47] | Kubo T, Im J, Wang X, et al. (2014) Solvent induced nanostructure formation in polymer thin films: The impact of oxidation and solvent. Colloid Surface A 444: 217–225. doi: 10.1016/j.colsurfa.2013.12.052 |
[48] | Ajayan PM, Stephan O, Colliex C, et al. (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265: 1212–1214. doi: 10.1126/science.265.5176.1212 |
[49] | Haggenmueller R, Gommans HH, Rinzler AG, et al. (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330: 219–225. doi: 10.1016/S0009-2614(00)01013-7 |
[50] | Puglia D, Valentini L, Kenny JM (2003) Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. J Appl Polym Sci 88: 452–458. doi: 10.1002/app.11745 |
[51] | Park C, Ounaies Z, Watson KA, et al. (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364: 303–308. doi: 10.1016/S0009-2614(02)01326-X |
[52] | Qian D, Dickey EC, Andrews R, et al. (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76: 2868–2870. doi: 10.1063/1.126500 |
[53] | Allaoui A, Bai S, Cheng HM, et al. (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62: 1993–1998. doi: 10.1016/S0266-3538(02)00129-X |
[54] | Ajayan PM, Schadler LS, Giannaris C, et al. (2000) Single-walled carbon nanotube–polymer composites: strength and weakness. Adv Mater 12: 750–753. doi: 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6 |
[55] | Li Y, Zhang H, Porwal H, et al. (2017) Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos Part A-Appl S 95: 229–236. doi: 10.1016/j.compositesa.2017.01.007 |
[56] | Zhang Y, Park SJ (2017) Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets. J Polym Sci Pol Phys 55: 1890–1898. doi: 10.1002/polb.24522 |
[57] | Zhang Y, Rhee KY, Park SJ (2017) Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos Part B-Eng 114: 111–120. doi: 10.1016/j.compositesb.2017.01.051 |
[58] | Sharmila TKB, Antony JV, Jayakrishnan MP, et al. (2016) Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide. Mater Design 90: 66–75. doi: 10.1016/j.matdes.2015.10.055 |
[59] | Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11: 937–941. doi: 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9 |
[60] | Rizzatti MR, De Araujo MA, Livi RP (1995) Bulk and surface modifications of insulating poly(paraphenylene sulphide) films by ion bombardment. Surf Coat Tech 70: 197–202. doi: 10.1016/0257-8972(94)02275-U |
[61] | Liu Y, Gao L (2005) A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes. Carbon 43: 47–52. doi: 10.1016/j.carbon.2004.08.019 |
[62] | Park OK, Jeevananda T, Kim NH, et al. (2009) Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scripta Mater 60: 551–554. doi: 10.1016/j.scriptamat.2008.12.005 |