Citation: Omid Gooranorimi, Ali Ghahremaninezhad. Investigating surface morphology and cracking during lithiation of Al anodes[J]. AIMS Materials Science, 2016, 3(4): 1632-1648. doi: 10.3934/matersci.2016.4.1632
[1] | Hatchard TD, Dahn JR (2004) In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. J Electrochem Soc 151: A838–A842. doi: 10.1149/1.1739217 |
[2] | Larcher D, Beattie S, Morcrette M, et al. (2007) Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17: 3759–3772. doi: 10.1039/b705421c |
[3] | Nitta N, Yushin G (2013) High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. Part Part Syst Charact 31: 317–336. |
[4] | Beaulieu LY, Cumyn VK, Eberman KW, et al. (2001) A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries. Rev Sci Instrum 72: 3313–3319. doi: 10.1063/1.1388214 |
[5] | McDowell MT, Lee SW, Nix WD, et al. (2013) 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv Mater 25: 4966–4985. doi: 10.1002/adma.201301795 |
[6] | Beaulieu LY, Eberman KW, Turner RL, et al. (2001) Colossal Reversible Volume Changes in Lithium Alloys. Electrochem Solid-State Lett 4: A137–A140. doi: 10.1149/1.1388178 |
[7] | Winter BM, Besenhard JO, Spahr ME, et al. (1998) Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv Mater 10: 725–763. |
[8] | Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163: 1003–1039. |
[9] | Liu XH, Zheng H, Zhong L, et al. (2011) Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11: 3312–3318. doi: 10.1021/nl201684d |
[10] | Nishikawa K, Munakata H, Kanamura K (2013) In-situ observation of one silicon particle during the first charging. J Power Sources 243: 630–634. doi: 10.1016/j.jpowsour.2013.06.052 |
[11] | Kalnaus S, Rhodes K, Daniel C (2011) A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources 196: 8116–8124. doi: 10.1016/j.jpowsour.2011.05.049 |
[12] | Rhodes K, Dudney N, Lara-Curzio E, et al. (2010) Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission. J Electrochem Soc 157: A1354–A1360. doi: 10.1149/1.3489374 |
[13] | Zhao K, Pharr M, Cai S, et al. (2011) Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge. J Am Ceram Soc 94: s226–s235. doi: 10.1111/j.1551-2916.2011.04432.x |
[14] | Sethuraman VA, Nguyen A, Chon MJ, et al. (2013) Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation. J Electrochem Soc 160: A739–A746. doi: 10.1149/2.021306jes |
[15] | Bower AF, Guduru PR, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59: 804–828. doi: 10.1016/j.jmps.2011.01.003 |
[16] | Melendres CA, Sy CC (1978) Structure and Cyclic Discharge Behavior of LiAl Electrodes. J Electrochem Soc 125: 727–731. doi: 10.1149/1.2131536 |
[17] | Wen CJ, Boukamp BA, Huggins RA (1979) Thermodynamic and Mass Transport Properties of “LiAl”. J Electrochem Soc 126: 2258–2266. doi: 10.1149/1.2128939 |
[18] | Besenhard JO, Hess M, Komenda P (1990) Dimensionally Stable Li-Alloy Electrodes for Secondary Batteries. Solid State Ionics 41: 525–529. |
[19] | Garreau M, Thevenin J, Fekir M, et al. (1983) On the processes responsible for the degradation of the aluminum-lithium electrode used as anode materials in lithium aprotic electrolyte batteries. J Power Sources 9: 235–238. |
[20] | Zaghib K, Gauthier M, Armand M (2003) Expanded metal a novel anode for Li-ion polymer batteries. J Power Sources 119–121: 76–83. |
[21] | Lei X, Wang C, Yi Z, Liang Y, et al. (2007) Effects of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries. J Alloys Compd 429: 311–315. doi: 10.1016/j.jallcom.2006.04.019 |
[22] | Hamon Y, Brousse T, Jousse F, et al. (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98: 185–187. |
[23] | Au M, McWhorter S, Ajo H, et al. (2010) Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries. J Power Sources 195: 3333–3337. doi: 10.1016/j.jpowsour.2009.11.102 |
[24] | Kuksenko SP (2013) Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters. Russ J Electrochem 49: 67–75. doi: 10.1134/S1023193512110080 |
[25] | Sharma SK, Kim MS, Kim DY, et al. (2013) Al nanorod thin films as anode electrode for Li ion rechargeable batteries. Electrochim Acta 87: 872–879. doi: 10.1016/j.electacta.2012.09.028 |
[26] | El Abedin SZ, Garsuch A, Endres F (2012) Aluminium Nanowire Electrodes for Lithium-Ion Batteries. Aust J Chem 65: 1529–1533. |
[27] | Leite MS, Ruzmetov D, Li Z, et al. (2014) Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes. J Mater Chem A 2: 20552–20559. doi: 10.1039/C4TA03716B |
[28] | Beaulieu LY, Hatchard TD, Bonakdarpour A, et al. (2003) Reaction of Li with Alloy Thin Films Studied by In Situ AFM. J Electrochem Soc 150: A1457–A1464. doi: 10.1149/1.1613668 |
[29] | Owen JR, Maskell WC, Steele BCH, et al. (1984) Thin film lithium aluminium negative plate material. Solid State Ionics 13: 329–334. doi: 10.1016/0167-2738(84)90076-6 |
[30] | Liu Y, Hudak NS, Huber DL, et al. (2011) In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett 11: 4188–4194. doi: 10.1021/nl202088h |
[31] | Hudak NS, Huber DL (2012) Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium. J Electrochem Soc 159: A688–A695. doi: 10.1149/2.023206jes |
[32] | John C, Huggins RA (1980) Electrochemical Investigation of Solubility and Chemical Diffusion of Lithium in Aluminum. Metall Mater Trans B 11: 131–137. doi: 10.1007/BF02657182 |
[33] | Pollak E, Lucas IT, Kostecki R (2010) A study of lithium transport in aluminum membranes. Electrochem Commun 12: 198–201. doi: 10.1016/j.elecom.2009.11.023 |
[34] | McDowell MT, Lee SW, Ryu I, et al. (2011) Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett 11: 4018–4025. doi: 10.1021/nl202630n |
[35] | Mittemeijer EJ, Welzel U (2008) The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Zeitschrift Fur Krist 223: 552–560. |
[36] | Transactions ECS, Society TE (2011) Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries. ECS Trans 33: 1–13. |
[37] | Gao H (1990) Stress concentration at slightly undulating. J Mech Phys Solids 39: 443–458. |
[38] | Ruan S, Schuh CA (2008) Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr Mater 59: 1218–1221. doi: 10.1016/j.scriptamat.2008.08.010 |
[39] | Bastos A, Zaefferer S, Raabe D, et al. (2006) Characterization of the microstructure and texture of nanostructured electrodeposited NiCo using electron backscatter diffraction (EBSD). Acta Mater 54: 2451–2462. |
[40] | Zhao K, Pharr M, Vlassak JJ, et al. (2010) Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl Phys 108: 073517. doi: 10.1063/1.3492617 |
[41] | Grantab R, Shenoy VB (2012) Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires. J Electrochem Soc 159: A584–A591. doi: 10.1149/2.072205jes |
[42] | Rice BJR (1969) On the ductile enlargement of voids in triaxial stress fields. J Phys Mech Solids 17: 201–217. |
[43] | Ghahremaninezhad A, Ravi-Chandar K (2012) Ductile failure behavior of polycrystalline Al 6061-T6. Int J Fract 174: 177–202. |
[44] | Kushima A, Huang JY, Li J (2012) Quantitative Fracture Strength and Plasticity Measurements of Lithiated Silicon Nanowires by In Situ TEM Tensile Experiments. ACS Nano 6: 9425–9432. doi: 10.1021/nn3037623 |
[45] | Zhao K, Pharr M, Wan Q, et al. (2012) Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries. J Electrochem Soc 159: A238–A243. doi: 10.1149/2.020203jes |
[46] | Zhao K, Wang WL, Gregoire J, et al. (2011) Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett 11: 2962–2967. doi: 10.1021/nl201501s |
[47] | Nadimpalli SPV, Sethuraman VA, Bucci G, et al. (2013) On Plastic Deformation and Fracture in Si Films during Electrochemical Lithiation/Delithiation Cycling. J Electrochem Soc 160: A1885–A1893. doi: 10.1149/2.098310jes |