Citation: Songlin Zheng, Yong Ni, Linghui He. Concurrent interface shearing and dislocation core change on the glide dislocation-interface interactions: a phase field approach[J]. AIMS Materials Science, 2015, 2(3): 260-278. doi: 10.3934/matersci.2015.3.260
[1] | Argon AS (2008) Strengthening mechanisms in plasticity. Oxford: Oxford University Press. |
[2] | Kubin LP (2013) Dislocations, mesoscale simulations and plastic flow. Oxford: Oxford University Press. |
[3] | Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford: Oxford University Press. |
[4] | Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review Acta Mater 46: 5611-5626. |
[5] | Misra A, Kung H (2001) Deformation behavior of nanostructured metallic multilayers Adv Eng Mater 3: 217-222. |
[6] | Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324: 349-352. doi: 10.1126/science.1159610 |
[7] | Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53: 4817-4824. doi: 10.1016/j.actamat.2005.06.025 |
[8] | Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15: 20-28. doi: 10.1016/j.cossms.2010.09.002 |
[9] | Misra A, Hirth JP, Kung H (2002) Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Phil Mag A 82: 2935-2951. doi: 10.1080/01418610208239626 |
[10] | Anderson PM, Foecke T, Hazzledine PM (1999) Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull 24: 27-33. |
[11] | Clemens BM, Kung H, Barnett SA (1999) Structure and strength of multilayers. MRS Bulletin 24: 20-26. |
[12] | Hoagland RG, Mitchell TE, Hirth JP, et al. (2002) On the strengthening effects of interfaces in multilayer fee metallic composites. Phil Mag A 82: 643-664. |
[13] | Li QZ, Anderson PM (2005) Dislocation-based modeling of the mechanical behavior of epitaxial metallic multilayer thin films. Acta Mater 53: 1121-1134. |
[14] | Anderson PM, Xin X (2000) The Critical Shear Stress to Transmit A Peierls Screw Dislocation Across A Non-slipping Interface. Multiscale Fracture and Deformationin Materials and Structures: The James R Rice 60th Anniversary Volume. Springer Netherland; 84: 87-105. |
[15] | Anderson PM, Li Z (2001) A Peierls analysis of the critical stress fortransmission of a screw dislocation across a coherent, sliding interface. Mater Sci Eng A 319:182-187. |
[16] | Shen Y, Anderson PM (2006) Transmission of a screw dislocation across acoherent, slipping interface. Acta Mater 54: 3941-3951. |
[17] | Shen Y, Anderson PM (2007) Transmission of a screw dislocation across a coherent, non-slipping interface. J Mech Phys Solids 55: 956-979. |
[18] | Chu HJ, Wang J, Beyerlein IJ, et al. (2013) Dislocation models of interfacial shearing induced by an approaching lattice glide dislocation. Int J Plast 41: 1-13. |
[19] | Demkowicz MJ, Wang J, Hoagland RG (2008) Interfaces between dissimilar crystalline solids. Dislocations in Solids. Amsterdam: Elsevier North-Holland; 14: 141-205. doi: 10.1016/S1572-4859(07)00003-4 |
[20] | Rao SI, Hazzledine PM (2000) Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system. Phil Mag A 80: 2011-2040. doi: 10.1080/01418610008212148 |
[21] | Hoagland RG, Hirth JP, Misra A (2006) On the role of weak interfaces in blocking slip in nanoscale layered composites. Phil Mag 86: 3537-3558. |
[22] | Wang J, Hoagland RG, Hirth JP, et al. (2008) Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater 56: 5685-5693. doi: 10.1016/j.actamat.2008.07.041 |
[23] | Wang J, Hoagland RG, Hirth JP, et al. (2008) Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Mater 56: 3109-3119. |
[24] | Wang J, Hoagland RG, Liu XY, et al. (2011) The influence of interface shear strength on the glide dislocation-interface interactions. Acta Mater 59: 3164-3173. |
[25] | Wang J, Misra A, Hoagland RG, et al. (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60: 1503-13. |
[26] | Zhu T, Li J, Samanta A, et al. (2007) Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc Natl Acad Sci 104: 3031-3036. |
[27] | Wang YU, Jin YM, Cuitino AM, et al. (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847-1857. |
[28] | Wang Y, Li J (2010) Phase field modeling of defects and deformation. Acta Mater 58: 1212-1235. |
[29] | Shen C, Wang Y (2003) Phase field model of dislocation networks. Acta Mater 51: 2595-2610. |
[30] | Shen C, Wang Y (2004) Incorporation of γ-surface to phase field model of dislocations: simulating dislocation dissociation in fcc crystals. Acta Mater 52: 683-691. doi: 10.1016/j.actamat.2003.10.014 |
[31] | Koslowski M, Cuitino AM, Ortiz M (2002) A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J Mech Phys Solids 50: 2597-2635. doi: 10.1016/S0022-5096(02)00037-6 |
[32] | Hunter A, Beyerlein IJ, Germann TC, et al. (2011) Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three-dimensional phase field dislocations dynamics model. Phys Rev B 84: 144108. doi: 10.1103/PhysRevB.84.144108 |
[33] | Koslowski M, Lee DW, Lei L (2011) Role of grain boundary energetics on the maximum strength of nanocrystalline Nickel. J Mech Phys Solids, 59: 1427-1436. doi: 10.1016/j.jmps.2011.03.011 |
[34] | Cao L, Hunter A, Beyerlein IJ, et al. (2015) The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals. J Mech Phys Solids 78:415-426. doi: 10.1016/j.jmps.2015.02.019 |
[35] | Mianroodi JR, Svendsen B (2015) Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems. J Mech Phys Solids 77: 109-122. doi: 10.1016/j.jmps.2015.01.007 |
[36] | Zheng SL, Ni Y, He LH (2015) Phase field modeling of a glide dislocation transmission across a coherent sliding interface. Modelling Simul Mater Sci Eng 23: 035002. |
[37] | Vitek V (1968) Intrinsic stacking faults in body-centred cubic crystals. Phil Mag 18: 773-786 doi: 10.1080/14786436808227500 |
[38] | Levitas VI, Javanbakht M (2012) Advanced phase-field approach to dislocation evolution. Phys.Rev B86: 140101. |
[39] | Levitas VI, Javanbakht M (2013) Phase field approach to interaction of phase transformation and dislocation evolution. Appl Phys Lett 102: 251904. |
[40] | Levitas VI, Javanbakht M (2014) Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6: 162-166. doi: 10.1039/C3NR05044K |
[41] | Levitas VI, Javanbakht M (2015) Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J Mech Phys Solids 82: 345-366. doi: 10.1016/j.jmps.2015.05.009 |
[42] | Levitas VI, Javanbakht M (2015) Interaction between phase transformations and dislocations at the nanoscale Part 1 General phase field approach. J Mech Phys Solids 82: 287-319. doi: 10.1016/j.jmps.2015.05.005 |
[43] | Levitas VI, Javanbakht M (2015) Interaction between phase transformations and dislocations at the nanoscale Part 2 Phase field simulation examples. J Mech Phys Solids 82: 164-185. doi: 10.1016/j.jmps.2015.05.006 |
[44] | Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40: 239-271. doi: 10.1016/S0022-5096(05)80012-2 |
[45] | Khachaturyan AG, Shatalov GA (1969) Elastic interaction potential of defects in a crystal. Sov Phys Solid State 11: 118-123. |
[46] | Khachaturyan AG (1982) Theory of structural transformations in solids. New York: John Wiley & Sons. |