Citation: Hao Wang. On the annihilation of dislocation dipoles in metals[J]. AIMS Materials Science, 2017, 4(6): 1231-1239. doi: 10.3934/matersci.2017.6.1231
[1] | Mitchell TE (1964) Dislocations and plasticity in single crystals of face-centred cubic metals and alloys. Prog Appl Mater Res 6: 117–237. |
[2] | Veyssière P, Wang H, Xu DS, et al. (2009) Local dislocation reactions, self-organization and hardening in single slip. IOP Conf Ser: Mater Sci Eng 3: 012018. doi: 10.1088/1757-899X/3/1/012018 |
[3] | Kubin L, Kratochvìl J (2000) Elastic model for the sweeping of dipolar loops. Philos Mag A 80: 201–218. doi: 10.1080/01418610008212049 |
[4] | Tippelt B (1996) Influence of temperature on microstructural parameters of cyclically deformed nickel single crystals. Phil Mag Lett 74: 161–166. doi: 10.1080/095008396180317 |
[5] | Appel F, Herrmann D, Fischer FD, et al. (2013) Role of vacancies in work hardening and fatigue of TiAl alloys. Int J Plasticity 42: 83–100. doi: 10.1016/j.ijplas.2012.10.001 |
[6] | Essmann U, Rapp M (1973) Slip in copper crystals following weak neutron bombardment. Acta Metall 21: 1305–1317. doi: 10.1016/0001-6160(73)90172-7 |
[7] | Essmann U, Mughrabi H (1979) Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos Mag A 40: 731–756. doi: 10.1080/01418617908234871 |
[8] | Hahner P (1996) The dynamics of dislocation dipoles during single glide. Scripta Mater 34: 435–441. |
[9] | Hahner P, Tippelt B, Holste C (1998) On the dislocation dynamics of persistent slip bands in cyclically deformed f.c.c. metals. Acta Mater 46: 5073–5084. |
[10] | Antonopoulos JG, Brown LM, Winter AT (1976) Vacancy dipoles in fatigued copper. Philos Mag 34: 549–563. doi: 10.1080/14786437608223793 |
[11] | Kassner ME, Perez-Prado MT, Vecchio KS, et al. (2000) Determination of internal stresses in cyclically deformed copper single crystals using convergent-beam electron diffraction and dislocation dipole separation measurements. Acta Mater 48: 4247–4254. doi: 10.1016/S1359-6454(00)00284-6 |
[12] | Kassner ME, Wall MA, Delos-Reyes MA (2001) Primary and secondary dislocation dipole heights in cyclically deformed copper single crystals. Mater Sci Eng A 317: 28–31. doi: 10.1016/S0921-5093(01)01195-9 |
[13] | Tippelt B, Bretschneider J, Holste C (1997) The dislocation microstructure of cyclically deformed nickel single crystals at different temperatures. Phys Status Solidi A 163: 11–26. doi: 10.1002/1521-396X(199709)163:1<11::AID-PSSA11>3.0.CO;2-X |
[14] | Catalao S, Feaugas X, Pilvin P, et al. (2005) Dipole heights in cyclically deformed polycrystalline AISI 316L stainless steel. Mater Sci Eng A 400–401: 349–352. |
[15] | Veyssière P (2006) The weak-beam technique applied to the analysis of materials properties. J Mater Sci 41: 2691–2702. doi: 10.1007/s10853-006-7872-1 |
[16] | Veyssière P, Chiu YL, Niewczas M (2006) Dislocation micromechanisms under single slip conditions. Z Metallkd 97: 189–199. doi: 10.3139/146.101242 |
[17] | Duesbery MS, Joos B (1986) Dislocations in two dimensions I. Floating systems. Philos Mag A 54: 145–163. doi: 10.1080/01418618608242892 |
[18] | Rabier J, Puls MP (1989) On the core structures of edge dislocations in NaCl and MgO. Consequences for the core configurations of dislocation dipoles. Philos Mag A 59: 821–842. |
[19] | Tichy G, Essmann U (1989) Modelling of edge dislocation dipoles in face-centred-cubic lattices. Philos Mag B 60: 503–512. doi: 10.1080/13642818908205923 |
[20] | Aslanides A, Pontikis V (2000) Numerical study of the athermal annihilation of edge-dislocation dipoles. Philos Mag A 80: 2337–2353. doi: 10.1080/01418610008216476 |
[21] | Essmann U (1982) Irreversibility of cyclic slip in persistent slip bands of fatigued pure fcc metals. Philos Mag A 45: 171–190. doi: 10.1080/01418618208243910 |
[22] | Essmann U, Gӧsele U, Mughrabi H (1981) A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions. Philos Mag A 44: 405–426. |
[23] | Antonopoulos JG, Winter AT (1976) Weak-beam study of dislocation structures in fatigued copper. Philos Mag 33: 87–95. doi: 10.1080/14786437608221093 |
[24] | Piqueras J, Grosskreutz JC, Frank W (1972) The influence of point defect clusters on fatigue hardening of copper single crystals. Phys Status Solidi A 11: 567–580. doi: 10.1002/pssa.2210110220 |
[25] | Veyssière P, Chiu YL (2007) Equilibrium and passing properties of dislocation dipoles. Philos Mag 87: 3351–3372. doi: 10.1080/14786430601021678 |
[26] | Hoppe R, Appel F (2014) Deformation-induced internal stresses in multiphase titanium aluminide alloys. Acta Mater 64: 169–178. doi: 10.1016/j.actamat.2013.10.024 |
[27] | Wang H, Xu DS, Yang R, et al. (2009) The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl. Acta Mater 57: 3725–3737. doi: 10.1016/j.actamat.2009.04.019 |
[28] | Wang H, Xu DS, Rodney D, et al. (2013) Atomistic investigation of the annihilation of non-screw dislocation dipoles in Al, Cu, Ni and γ-TiAl. Model Simul Mater Sc 21: 025002. doi: 10.1088/0965-0393/21/2/025002 |
[29] | Wang H, Xu DS, Yang R, et al. (2008) The transformation of edge dislocation dipoles in aluminium. Acta Mater 56: 4608–4620. doi: 10.1016/j.actamat.2008.05.019 |
[30] | Wang H, Xu DS, Yang R, et al. (2011) The formation of stacking fault tetrahedra in Al and Cu: I. Dipole annihilation and the nucleation stage. Acta Mater 59: 1–9. |
[31] | Wang H, Xu DS, Yang R (2014) Defect clustering upon dislocation annihilation in α-titanium and α-zirconium with hexagonal close-packed structure. Model Simul Mater Sc 22: 085004. doi: 10.1088/0965-0393/22/8/085004 |
[32] | Brinckmann S, Sivanesapillai R, Hartmaier A (2011) On the formation of vacancies by edge dislocation dipole annihilation in fatigued copper. Int J Fatigue 33: 1369–1375. doi: 10.1016/j.ijfatigue.2011.05.004 |
[33] | Wang H, Rodney D, Xu D, et al. (2011) Pentavacancy as the key nucleus for vacancy clustering in aluminum. Phys Rev B 84: 220103(R). |
[34] | Wang H, Rodney D, Xu DS, et al. (2013) Defect kinetics on experimental timescales using atomistic simulations. Philos Mag 93: 186–202. doi: 10.1080/14786435.2012.674224 |
[35] | Wang H, Xu DS, Veyssière P, et al. (2013) Interstitial loop strengthening upon deformation in aluminum via molecular dynamics simulations. Acta Mater 61: 3499–3508. doi: 10.1016/j.actamat.2013.02.044 |
[36] | Niewczas M (2014) Intermittent plastic flow of single crystals: central problems in plasticity: a review. Mater Sci Tech-Lond 30: 739–757. doi: 10.1179/1743284713Y.0000000492 |
[37] | Wang H, Xu DS, Yang R, et al. (2011) The formation of stacking fault tetrahedra in Al and Cu: II. SFT growth by successive absorption of vacancies generated by dipole annihilation. Acta Mater 59: 10–18. |
[38] | He Y, Liu Z, Zhou G, et al. (2018) Dislocation dipole-induced strengthening in intermetallic TiAl. Scripta Mater 143: 98–102. doi: 10.1016/j.scriptamat.2017.09.010 |
[39] | Fan Y, Kushima A, Yildiz B (2010) Unfaulting mechanism of trapped self-interstitial atom clusters in bcc Fe: A kinetic study based on the potential energy landscape. Phys Rev B 81: 104102. doi: 10.1103/PhysRevB.81.104102 |
[40] | Zhang YG, Xu Q, Li HX (1992) Observations and formation mechanism of 1/3<121> type faulted dipoles in TiAl deformed at room temperature. Scripta Metall Mater 26: 865–870. doi: 10.1016/0956-716X(92)90673-3 |
[41] | Viguier B, Hemker KJ, Schaublin R, et al. (1993) Characterizing Faulted Dipoles in TiAl with Electron-Microscopy and Computed Image Simulations. J Phys IV France 3: C7-441–C7-444. |
[42] | Xu Q, Zhang YG, Jones IP, et al. (1995) Further verification of 1/3<121> type faulted dipoles in TiAl. Scripta Metall Mater 32: 225–228. doi: 10.1016/S0956-716X(99)80041-7 |
[43] | Gao Y, Zhu J, Cai QG (1995) The observation on faulted dipoles in deformed TiAl-based alloys, in: Horton JA, Baker I, Hanada S, et al., High-Temperature Ordered Intermetallic Alloys VI, Pittsbugh, PA: Materials Research Society, 617–622. |
[44] | Viguier B, Hemker KJ (1996) Characterizing faulted dipoles in deformed gamma TiAl. Philos Mag A 73: 575–599. doi: 10.1080/01418619608242985 |
[45] | Grégori F, Veyssière P (2000) Properties of <011]{111} slip in Al-rich γ-TiAl II. The formation of faulted dipoles. Philos Mag A 80: 2933–2955. |
[46] | Chiu YL, Inui H, Nakano T, et al. (2003) The dependence of the faulted dipole density on load orientation in γ-TiAl. Phil Mag Lett 83: 485–493. |
[47] | Chiu YL, Gregori F, Nakano T, et al. (2003) The nucleation of faulted dipoles at intersection jogs in γ-TiAl. Philos Mag 83: 1347–1363. doi: 10.1080/0141861031000063240 |