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Abstract: Strengthening in nanoscale metallic multilayers is closely related to the glide 

dislocation-interface interaction. The interface can be sheared by the stress of the approaching glide 

dislocation with its core changed. How the concurrent interface shearing and the dislocation core 

change influence such interaction dominated strength is studied using three dimensional phase field 

microelasticity modeling and simulation. The simulated results show that when the glide dislocation 

is close to or away from the interface, the width of its core changes abruptly in accompany with the 

interface shear zone broadening or shrinking, respectively. A wider interface shear zone is developed 

on the interface with a lower shear strength, and can trap the glide dislocation at the interface in a 

lower energy state, and thus leads a stronger barrier to dislocation transmission. The results further 

show that the continuum model of the dislocation without the core-width change underestimates the 

interfacial barrier strength especially for the glide dislocation transmission across weak interfaces. 
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1.  Introduction 

Computer modeling and simulation of defects ensemble and their elastic interactions from 

atomistic scale to continuum scale are important to get insights into mechanism-based strength or 

plasticity in materials [1,2]. Especially computational modeling capable of bridging multiple time 

and length scales becomes one of the fast growing areas in understanding the mechanical response of 

materials [3]. In metallic multilayers, the strength shows a maximum at a critical layer     

thickness [4–7]. The maximum is closely related to the critical stress required to transmit a glide 
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dislocation across an interface wherein the interface acts as a barrier to impede the movement of the 

dislocation [7–9]. How the interfacial properties influence on the interfacial barrier strength has been 

widely studied by theoretical [10–18] and atomistic models [19–26]. 

Shen and Anderson [16,17] study the interfacial barriers of both welded (non-slipping) and 

slipping interface. Their results predict that significant interfacial sliding delocalizes the dislocation 

core within the slipping interface and creates a larger barrier to slip transmission in comparison with 

the welded interface. By using atomistic modeling, Rao and Hazzledine [20] show that screw 

dislocations in Cu prefer to spread on the Cu-Ni interface rather than to transmit into Ni. The 

molecular dynamics simulations performed by Hoagland et al. [21] indicate that opaque interfaces 

composed of two different crystal structures (e.g., Cu-Nb) present larger barrier strength than 

transparent interfaces with nearly continuous slip systems (e.g., Cu-Ni). The atomistic simulation 

results given by Wang et al. [22–24] demonstrate that these opaque interfaces with low shear strength 

(“weak” interfaces) exhibit strong barrier. They also show that the slip transmission barrier 

calculated by the chain of states method increases with the decrease of the interface shear    

strength [25]. By using the Green function method for anisotropic bimaterials, Chu et al. [18] employ 

dislocation-based interface shear models to systematically discuss the dislocation-interface 

interaction for possible implementation into large scale dislocation dynamic simulations. These 

models suggest that the interface shear results in an attractive force to trap the glide dislocation at the 

interface and thus leads to a barrier to dislocation transmission. 

The force on the glide dislocation exerted by the interface is attractive only if the total energy 

increases as the glide dislocation is away from the interface. The maximum attractive force that 

should be overcome by the external stress can be viewed as the interfacial barrier strength during the 

dislocation escaping from the interface. Recent atomistic simulations further indicated that the 

interface shear involves the nucleation and growth of interfacial dislocations, and there is indeed an 

abrupt energy decrease like an energy well when the glide dislocation approaches the       

interface [21–25]. The weaker interface in shear shows a wider glide dislocation core spreading, 

results in a deeper energy drop at the interface, and produces a larger attractive force and thus a 

stronger interfacial barrier strength for slip transmission [25]. The energy decrease is significantly 

influenced by both the dislocation line energy change due to the core spreading [16], and the 

complicated cross-slip interaction between the glide dislocation and the induced interfacial 

dislocations [25]. Their contributions to the interfacial barrier strength are not additive due to the 

nonlinear coupling wherein the dislocation core change adaptively counteracts the stress 

concentration induced by the glide dislocation and the induced interfacial dislocations. 

Developing a continuum model taking into account concurrent interface shearing and 

dislocation core change to reproduce the energy change during the glide dislocation across the 

interface is useful. In contrast to the dislocation-based interface shear model wherein the dislocations 

are described as line defects with compact cores, phase field model of dislocations could describe 

arbitrary dislocation core configurations, elastic interactions between arbitrary dislocations coupled 

with external applied stress [27–36]. After incorporating the stacking fault energy (SFE) of the 

shearable interface into the PFM model, similar to the case of  -surface [30,32,37], a phase field 

approach could be applied to study the glide dislocation-interface interaction [36]. In addition 

different relaxation rate constants in the phase field model could characterize different dislocation 

mobilities on the glide plane and the interface, the rate competition between the transmission 
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processes and the interface shearing process can be addressed as well [36]. In this paper such phase 

field approach is adopted to discuss the effect of concurrent interface shearing and dislocation core 

change on the interfacial barrier strength for the glide dislocation transmission. It is worth to mention 

that recently the large-deformation phase field theory is developed and applied for the interaction 

between dislocations and phase interfaces [38–44]. The important mechanism of interface motion 

elucidated by this improved model is enlightening for dislocation-interface interaction. Although in 

the current study we use the small-deformation phase field model, and these calculations are not yet 

material specific because the simple stacking fault energy surfaces for the glide plane and the 

interface are adopted. It would provide valuable trend in what determines the width and depth of the 

energy well, the interfacial barrier strength for slip transmission and give insight into the limitations 

of continuum model of the dislocation without the core-width change. 

2. Phase Field Model of the Glide Dislocation Across a Coherent Sliding Interface 

In the current model we consider a screw dislocation across a bi-material coherent interface 

shown in Figure 1. The glide plane is denoted by 0z  and the interface between phases I and II is 

viewed as a mathematically sharp plane denoted by 0x  . To focus on the effects of the concurrent 

interface shearing and the dislocation core change, the lattice mismatch between the two phases is 

ignored. A pre-existing dislocation at the glide plane in phase II tends to glide across the interface 

under an external shear, ext

yz . The straight glide dislocation with the Burgers vector and the line 

direction both parallel to y axis is assumed to be a pure screw type for simplicity, the resultant shear 

 

Figure 1. Sketch of a glide dislocation approaching a bimaterial interface under an 

applied shear stress. 
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stress by the dislocation only has the component along y axis, and thus the stress-driven nucleated 

interfacial dislocation only includes pure screw component. Because the initial glide dislocation is 

straight and the external stress is pure shear, the glide dislocation and the nucleated interfacial 

dislocation keep straight and pure screw all the time. We adopted a 3D PFM model to treat the 

interplay between the dislocation glide and the movement of interfacial dislocations. In the PFM 

modeling [27], the phase field variables  , ,m  r are used to represent the amount of relative slips 

in the slip plane   and the slip direction m  in units of the Burgers vector  ,mb . The 

evolution of  , ,m  r  characterizes the dislocation assembly towards equilibrium, driven by 

minimizing the total system free energy including the crystalline energy 
crystE  caused by localized 

slips, their elastic interaction energies 
elasE  and the additional energy 

extE  induced by applied 

stress 

tot cryst elas ext .E E E E                                (1)  

The gradient term included in the original PFM models [27] is removed here for simplicity followed 

by the previous work [32,33,36]. 

Here two phase field variables,  s r ,  int r  are introduced as shape functions of the 

slipped regions.  s 1 r  and  int 1 r  are in the slipped area at the glide plane and the 

interface respectively, while  s 0 r  and  int 0 r  are in the unslipped area at the glide plane 

and the interface respectively. Following the treatment in the PFM, formulating the total free energy 

in Eq.(1) as a function of the two phase fields can be obtained. The crystalline energy (interplanar 

potential energy) caused by localized slip is given by  

  cryst 3

,

, , d ,
m

E m r





    Δ r  (2)  

where   is the density of interplanar potential energy as a functional of the interplanar slip

 , ,mΔ r  (the relative shear displacement) in the slip plane   and slip direction m . In Rice’s 

model [44], the expression of   in terms of the total interplanar slip  , ,mΔ r  has the form 
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where  ,m   is the unstable SFE in the slip plane   and slip direction m ,  d   is the 

interplanar distance of slip plane  , and then the interplanar shear stress is defined as 

 
 
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 

 

, 2 , ,
sin .
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 
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 
   
  

Δ r
τ

Δ r b r b r
 (4)  

The maximum shear stress defined as the interfacial shear strength is directly related to  . The 

magnitude of the total interplanar slip is the sum of the inelastic slip and the elastic slip. At the glide 

plane, 
s

Δ  has the form 

  
s s s

s s s

s s

2
sin ,

d  




 
   

 

Δ
Δ b r

b b
                          (5)  

and at the interface between phase I and II, 
int

Δ  is given by 

 
int int int

int int int

int int

2
sin ,

d  




 
   

 

Δ
Δ b r

b b
                        (6)  

where the Burgers vector, the interplanar distance and the unstable SFE are s [010]bb , 
sd , s for 

the glide interface, and 
int [010]bb , 

intd , 
int  for the interface, respectively.   is the shear 

modulus of the system in the isotropic elasticity, 
s I   in the phase I and s II   in the phase II. 

Substituting Eqs. (3), (5), (6) into Eq. (2), the crystalline energy of the system becomes a functional 

of  s r  and  int r . Only in the limit of 
s int 0d d   under an unphysical condition, the term of 

the elastic slip in Eqs. (5),(6) disappears and the final expression of Eq. (2) reduces to that of the 

conventional crystalline energy function in terms of the inelastic slip [27]. Otherwise, the effect of 

the elastic slip cannot be ignored in particular during dislocation motion under an applied      

stress [44]. The elastic energy in Eq. (1) is mainly caused by the interplay between the external stress 

and the eigenstrain distribution from the inelastic slips. The eigenstrain  0

ij r  induced by the 

inelastic slips has the form 

     
s s int int

0 s int

s int
,

i j i j

ij

b n b n

d d
   r r r                         (7)  

where s

jn  and int

jn  are the component of the unit normal vector of the glide plane and of the 

interface respectively. When the bi-material system is elastically homogeneous, the 

Khachaturyan-Shatalov theory [45,46] gives the exact solution of the elastic energy in terms of 

 0

ij r : 
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where 
ijklC  is the elastic moduli tensor, ξ is the vector in the Fourier space, and /e ξ ξ is the 

unit vector along ξ .  0

ij ξ  is the Fourier transformation of  0

ij r  given by the equation 

   0 0 3, i
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ξ r
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
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is the elastic Green function, ext

ij  is 

the external applied stress and the symbol
*
denotes the complex conjugation. The integral

0 ξ  is in 

the Fourier space excluding the points at 0ξ  and V is the total volume of the system. 

Substituting Eq. (7) into Eq.(8), the elastic energy of the system also becomes a functional of  s r  

and  int r . The third term of Eq. (1) can be written as 

 ext ext 0 3 1 ext extd ,
2

ij ij ijkl ij kl

V
E r C      r                       (9)  

After the total free energy is expressed as a function of the given two phase field variables, the 

variational derivatives of the total free energy with respect to     s int, , ,t t r r  provide the 

driving forces for the evolution processes of     s int, , ,t t r r  governed by the Ginzburg-Landau 

kinetic equations [27]: 
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where t  is the time and L  is the positive kinetic coefficient characterizing the relaxation rates of 

 s r  and  int r .  , , ,m t  r  is the Langevin Gaussian noise term mimicking thermal 

fluctuations. Substituting Eqs. (3), (8), (9) into Eq. (10), Eq.(10) can be rewritten as 
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 is the elastic stress with 
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 0 0 31
,kl ij t d r

V
   r . After the spatial length is in unit 0.25b and the time is in unit  1/ct L , the 

reduced forms of Eq.(11) are governed by the given dimensionless parameters: 
int / 1d b  , 

s / 1d b  , 
A A

2
/

2

b
 



 
  

 
 with A=s, int , and exit exit /ij ij   . In the simulations, using a finite 

difference method, Eqs. (11.a) and (11.b) are solved in the computational cell 512 4 512  with 

periodic boundary conditions along all three dimensions to give the time evolution of the slip profiles 

at the glide plane and the interface under applied stress. An artificial weak interface with 
s 0   is 

assumed at 256x   to adsorb the image glide dislocation. The steady solutions of Eq. (11) further 

give the equilibrium configuration corresponding to     tot s int/ , , , 0E t t    r r . After the 

profile of  s r  is calculated, the core width 
sw  and the position 

sX  of the glide dislocation 

can be estimated by 

 s s

s

0.75 0.25
w x x

  
   (12)  

and 

  
1

s

0
.s sX x d    (13)  

If the total energy is a function of the position of the glide dislocation, the negative derivative of 

the total free energy with respect to 
sX  generates the configurational force on the glide dislocation. 

Negative configurational force acts as resistant force for the movement of the glide dislocation and 

vice versa. The following numerical results will show the changes of  s r  and  int r  during the 

glide dislocation transmission across the interface under different levels of applied shear stress by 

varying the interfacial shear strength, as well as the associated changes of the total energy and the 

configurational force on the glide dislocation. 

3.  Results and Discussion 

The interfacial barrier to glide dislocation slip transmission is influenced by both the dislocation 

core changes and the cross-slip interaction between the glide dislocation and induced interfacial 

dislocations. The results consist of two sub-sections. In Section 3.1, the interface is assumed to be 

strongly bonded so that it is non-shearable, and the effect of the SFE mismatch on the dislocation 

core change as well as the interface resistance is investigated. In Section 3.2, the interface with weak 

interfacial bonding can be sheared by the stress field of the glide dislocation and the influence of the 

interface shear on the interfacial barrier is studied. 
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3.1. The interfacial resistance of a non-shearable interface 

If the interface is non-shearable, int  is viewed as infinite and we assumed  int , 0t r . For a 

bi-material system with the given SFE mismatch characterized by 
I =1.0 , II =0.2 , Figure 2 shows 

the change of the core width of the glide dislocation decreases rapidly during its transmission across 

the interface from phase II to phase I under the external shear ext / =0.021yz  . The change of the line 

is piece-wise in this figure, because the minimum resolution for the core width determined by Eq. 

(12) is the spatial length 0.25b. This trend of the core width change is consistent with the known 

predicting / ~1/s sw b   in elastic homogenous phases [14]. 

 

Figure 2. The core width 
sw  of the glide dislocation plotted as a function of its 

position 
sX  during its transmission across the bimaterial interface without 

interface shear under given parameters 
I =1.0 , 

II =0.2  and ext / =0.021yz  . 

The rapid decrease of the core width near the interface would cause large energy change of the 

system during the transmission process. Figure 3 plots the energy change with respect to the position 

of the glide dislocation when it spontaneously moves from phase I to phase II with 
I =1.0 ,

II =0.2  

in the absence of applied stress. Therefore the negative derivative of the energy with respect to the 

position of the glide dislocation generates a resistance force for the transmission of the glide 

dislocation from phase II to phase I. This resistance force is originated from the energy change of the 
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dislocation core change due to the SFE mismatch between the two phases. Figure 4 plots the profile 

of  s x  with respect to /x b  at the glide plane under different levels of applied shear stress under 

given parameters I =1.0  and II =0.2 . The results show that the glide dislocation can slip 

transmission over the interface from phase II to phase I only if the applied stress exceeds a critical 

value. This critical applied stress, ext / =0.021yz  , is equal to the maximum resistant force that 

should be overcome during the dislocation transmission across the interface and is defined as the 

interfacial barrier strength 
* . 

 

Figure 3. Plot of the dislocation free energy 
totE  as a function of the position of the 

glide dislocation 
sX in the absence of applied shear stress without interface shear 

under the given parameters 
I =1.0  and 

II =0.2 . 

According to the definition of the interfacial barrier strength in Figure 4, the interfacial barrier 

strengths without interface shear are calculated for different I  and II . Figure 5 shows 
*  

increases linearly with difference 
I II      and is insensitive to the average  I II

avg / 2    . 

The calculated result is consistent with the analytic solution given by Anderson and Xin [14] in the 

case of no elastic mismatch. These results demonstrate that the larger SFE mismatch induces the 

larger dislocation core change during the transmission process and causes more rapid change of the 

dislocation energy near the interface, and leads to larger interfacial resistance. 
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Figure 4. The profile of  ,s t r  plotted with respect to /x b  at the glide plane 

under different levels of applied shear stress without interface shear under the given 

parameters 
I =1.0  and 

II =0.2 . 

 

Figure 5. Plot of the calculated interfacial barrier strength without interface shear 

as a function of   and
avg in comparison with the analytic solution given by 

Anderson and Xin [34]. 
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3.2. Influence of the interface shear on the interfacial resistance 

When the interface has limited shear strength and it could be sheared by the stress field of the 

glide dislocation. To investigate the effects of interface shear, we keep I II= 1.0    and only vary 

the value of 
int . The distribution of normalized interfacial shear stress /xy   plotted with respect 

to /z b  at the interface in Figure 6 clearly shows that the interface shearing could effectively 

counteract the shear stress concentration induced by the glide dislocation at the interface under the 

given parameters I II= 1.0    and ext / 0yz   . Figs. (7), (8), plot the profiles of  s x  and 

 int z , respectively, under different levels of applied shear stress with the given parameters

I II= 1.0    and int =0.2 . Figure 7 shows that the glide dislocation cannot transmit across the 

interface until the external shear stress is up to a critical value. After ext / 0.0277yz   , the glide 

dislocation can slip across the interface, it indicates that the interface barrier strength is 

* 0.0277  . In comparison with 
* 0   in the similar case without interface shear as simulated in 

Figure 5, we believe that it is the interface shear leading to the significant increase of 
* , which is 

consistent with the previous results of atomistic simulation and modeling [21–25]. From Figure 7, 

the dislocation core is constricted heavily when it reaches the interface. The reason is that the 

interface shear can reduce the elastic energy by counteracting the shear stress, the dislocation core 

tends to be trapped and constricted onto the sharp interface to relieve the elastic energy. 

The interface shearing at the interface results in an inelastic shear zone via nucleation and 

growth of interfacial dislocations. Figure 8 shows that the inelastic shear zone is noticeable when the 

glide dislocation is trapped at the interface under ext / 0.001yz   , it subsequently shrinks and 

disappears as the increased external shear stress is up to ext / 0.0277yz    consistent with the glide 

dislocation away from the interface. It is worth to note that when the glide dislocation is trapped at 

the interface, there are oscillations on the profiles of the field variables as shown in Figure 7 and 8. 

The reason is that we use the periodic Fast Fourier Transformation to solve the elastic filed of the 

almost singular glide dislocation trapped in the sharp interface, and these unphysical oscillations can 

be mitigated when the interface is treated as diffuse. The calculated sequential contour-maps of the 

profiles of  ,s t r  and  int , t r  during the glide dislocation transmission is shown in Figure 9. 

The snapshots in Figure 9 clearly show that the inelastic shear zone adaptively changes through the 

reversible movement of the interfacial dislocation driven by the stress field of the glide dislocation 

close to or away from the interface. 
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Figure 6. The distribution of normalized interfacial shear stress /xy   plotted 

with respect to /z b  at the interface with interface shear (
int 0.2  ) and without 

interface shear (
int Inf  ) when the glide dislocation is trapped at the interface in 

the absence of applied shear stress under the given parameters 
I II= 1.0   . 

 

Figure 7. The profile of  ,s t r  plotted with respect to /x b  at the glide plane 

under different levels of applied shear stress under the given parameters 
I II= 1.0    and 

int =0.2 . 
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Figure 8. The profile of  int , t r  plotted with respect to /z b  at the interface 

under different levels of applied shear stress under the given parameters 
I II= 1.0    and 

int =0.2 . 

Figure 10 plots the profile of  int z
 
under different values of int  when the glide dislocation 

is trapped at the interface in the absence of applied shear stress under the given parameters

I II= 1.0   . The results in Figure 10 show that a wider inelastic shear zone is developed for the 

interface with a lower shear strength. We performed numerical simulations for the glide dislocation 

transmission across the interface with different interfacial shear strength under external shear stress. 

Figure 11 plots the simulated interfacial barrier strength as a function of 
int  under the given 

parameters 
I II= 1.0   . It is found that the interfacial barrier strength significantly increases as the 

value of 
int  is lower than 0.8. When the value of 

int  is larger than 0.8, the interfacial barrier 

strength reaches a minimum (zero), which is the same as the prediction in the case without interface 

shear. Herein the enhancement of the interfacial barrier strength due to the interface shearing is 

neglectable. This is because the inelastic shear zone almost disappears at 
int 0.8   as indicated in 

Figure 10. These results reproduce some atomistic simulations trends revealing the “weak” interface 

strengthening mechanism [25]. 
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Figure 9. The simulated snapshots of the profile of  ,s t r  and  int , t r  under 

the given parameters 
I II= 1.0   , 

int =0.2  and ext / =0.0277yz  . The snapshots 

are captured when the glide dislocation is (a) initially in phase II, (b) approaching 

the interface, (c) trapped at the interface and (d) in phase I after transmission 

across the interface. 

The resistant force of the glide dislocation with interface shearing is originated from the 

increase of the total free energy as the glide dislocation away from the interface. Figure 12 plots the 

elastic energy 
elasE and crystalline energy 

crystE as a function of the position of the glide dislocation 

sX  for 
int 0.2   and 

int 0.8   in the absence of applied shear stress. Both 
elasE  and 

crystE

decrease when the glide dislocation is close to the interface. The interface involving interface 

shearing acts as an energy well, which can trap the glide dislocation at the interface. The energy well 

for 
int 0.2   is deeper and narrower than that for 

int 0.8  . The deeper the energy well at the 

interface, the larger the attractive force on the glide dislocation, and the higher the interfacial barrier 

strength. The results in Figure 12 indicate that the attractive force is attributed to not only the elastic  
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Figure 10. The profile of  int , t r  plotted with respect to /z b  at the interface 

with different values of 
int  when the glide dislocation is trapped in the interface in 

the absence of applied shear stress under the given parameters 
I II= 1.0   . 

 

Figure 11. Plot of the calculated interfacial barrier strength 
*  as a function of 

int  

under the given parameters 
I II= 1.0   . Dashed line shows the interfacial barrier 

strength without interface shear. 
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interaction between the glide dislocation and interfacial dislocation [12,18] but also the crystalline 

energy change due to the core-width change of the dislocations [16]. At the continuum scale, the 

dislocation core change is usually ignored in the dislocation-based models [12,18]. In such situation 

the resistant force on the glide dislocation is only related to the change of the elastic energy and 

therefore is underestimated. The current simulation results show that the change of the dislocation 

crystalline energy induced by the core change also has large contribution to the interfacial barrier 

strength, especially for the weak interface. 

 

Figure 12. Plots of the elastic energy 
elasE  and crystalline energy 

crystE  as a 

function of the position of the glide dislocation 
sX  for 

int 0.2   and 
int 0.8   in 

the absence of applied shear stress under the given parameters 
I II= 1.0   . 

4.  Conclusions 

In summary, 3D PFM modeling and simulation are adopted to investigate a glide dislocation 

transmission across a coherent sliding interface. The interfacial barrier strength for the transmission 

is investigated with and without interface shear. In the case without interface shear, the resistant force 

on the glide dislocation across the interface mainly depends on the core-width change induced by the 

SFE mismatch, which is in good agreement with the theoretical solutions. In the case with interface 

shear, we show that weak interface develops a wide inelastic shear zone under the stress field of the 

glide dislocation, and can exert a large attractive force on the glide dislocation and thus largely 

enhance the interfacial barrier strength. The attractive force is attributed to both the elastic interaction 

between the glide dislocation and interfacial dislocation and the core change of them. The continuum 

model for the dislocation transmission across the weak interface without the core-width change may 

significantly underestimate the interfacial barrier strength. 
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