Citation: Ziang Chen, Chunguang Dai, Lei Shi, Gaofang Chen, Peng Wu, Liping Wang. Reaction-diffusion model of HIV infection of two target cells under optimal control strategy[J]. Electronic Research Archive, 2024, 32(6): 4129-4163. doi: 10.3934/era.2024186
[1] | X. Tian, J. Chen, X. Wang, Y. Xie, X. Zhang, D. Han, et al., Global, regional, and national HIV/AIDS disease burden levels and trends in 1990–2019: A systematic analysis for the global burden of disease 2019 study, Front. Public Health, 11 (2023), 1068664. https://doi.org/10.3389/fpubh.2023.1068664 doi: 10.3389/fpubh.2023.1068664 |
[2] | D. Jahagirdar, M. K. Walters, A. Novotney, E. D. Brewer, T. D. Frank, A. Carter, et al., Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Burden of Diseases Study 2019, Lancet HIV, 8 (2021), e633–e651. https://doi.org/10.1016/S2352-3018(21)00152-1 doi: 10.1016/S2352-3018(21)00152-1 |
[3] | S. K. Cribbs, K. Crothers, A. Morris, Pathogenesis of HIV-related lung disease: Immunity, infection, and inflammation, Physiol. Rev., 100 (2020), 603–632. https://doi.org/10.1152/physrev.00039.2018 doi: 10.1152/physrev.00039.2018 |
[4] | A. S. Fauci, G. Pantaleo, S. Stanley, D. Weissman, Immunopathogenic mechanisms of HIV infection, Ann. Int. Med., 124 (1996), 654–663. https://doi.org/10.7326/0003-4819-124-7-199604010-00006 doi: 10.7326/0003-4819-124-7-199604010-00006 |
[5] | R. F. Siliciano, W. C. Greene, HIV latency, Cold Spring Harbor Perspect. Med., 1 (2011), a007096. https://doi.org/10.1101/cshperspect.a007096 doi: 10.1101/cshperspect.a007096 |
[6] | N. H. Alshamrani, Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread, Chaos Solitons Fractals, 150 (2021), 110422. https://doi.org/10.1016/j.chaos.2020.110422 doi: 10.1016/j.chaos.2020.110422 |
[7] | Y. Yang, R. Xu, Mathematical analysis of a delayed HIV infection model with saturated CTL immune response and immune impairment, J. Appl. Math. Comput., 68 (2022), 2365–2380. https://doi.org/10.1007/s12190-021-01621-x doi: 10.1007/s12190-021-01621-x |
[8] | Y. Tian, X. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate, Nonlinear Anal. Real World Appl., 16 (2014), 17–26. https://doi.org/10.1016/j.nonrwa.2013.09.002 doi: 10.1016/j.nonrwa.2013.09.002 |
[9] | A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001 doi: 10.1016/j.bulm.2004.02.001 |
[10] | X. Wang, Q. Ge, Y. Chen, Threshold dynamics of an HIV infection model with two distinct cell subsets, Appl. Math. Lett., 103 (2020), 106242. https://doi.org/10.1016/j.aml.2020.106242 doi: 10.1016/j.aml.2020.106242 |
[11] | P. W. Nelson, A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73–94. https://doi.org/10.1016/S0025-5564(02)00099-8 doi: 10.1016/S0025-5564(02)00099-8 |
[12] | W. Zuo, M. Shao, Stationary distribution, extinction and density function for a stochastic HIV model with a Hill-type infection rate and distributed delay, Electron. Res. Arch., 30 (2022), 4066–4085. https://doi.org/10.3934/era.2022206 doi: 10.3934/era.2022206 |
[13] | R. Zhang, J. Wang, On the global attractivity for a reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 84 (2022), 53. https://doi.org/10.1007/s00285-022-01751-1 doi: 10.1007/s00285-022-01751-1 |
[14] | M. Cao, J. Zhao, J. Wang, R. Zhang, Dynamical analysis of a reaction-diffusion vector-borne disease model incorporating age-space structure and multiple transmission routes, Commun. Nonlinear. Sci., 127 (2023), 107550. https://doi.org/10.1016/j.cnsns.2023.107550 doi: 10.1016/j.cnsns.2023.107550 |
[15] | A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-A doi: 10.1016/0025-5564(93)90043-A |
[16] | V. Müller, J. F. Vigueras-Gómez, S. Bonhoeffer, Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection, J. Virol., 76 (2002), 8963–8965. https://doi.org/10.1128/jvi.76.17.8963-8965.2002 doi: 10.1128/jvi.76.17.8963-8965.2002 |
[17] | H. Wang, R. Xu, Z. Wang, H. Chen, Global dynamics of a class of HIV-1 infection models with latently infected cells, Nonlinear Anal. Model., 20 (2015), 21–37. https://doi.org/10.15388/NA.2015.1.2 doi: 10.15388/NA.2015.1.2 |
[18] | X. Wang, J. Yang, X. Luo, Asymptotical profiles of a viral infection model with multi-target cells and spatial diffusion, Comput. Math. Appl., 77 (2019), 389–406. https://doi.org/10.1016/j.camwa.2018.09.043 doi: 10.1016/j.camwa.2018.09.043 |
[19] | K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78–95. https://doi.org/10.1016/j.mbs.2007.05.004 doi: 10.1016/j.mbs.2007.05.004 |
[20] | D. S. Green, D. M. Center, W. W. Cruikshank, Human immunodeficiency virus type 1 gp120 reprogramming of CD4+ T-cell migration provides a mechanism for lymphadenopathy, J. Virol., 83 (2009), 5765–5772. https://doi.org/10.1128/jvi.00130-09 doi: 10.1128/jvi.00130-09 |
[21] | H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, V. Sandoghdar, Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers, Nano Lett., 7 (2007), 2263–2266. https://doi.org/10.1021/nl070766y doi: 10.1021/nl070766y |
[22] | H. Boukari, B. Brichacek, P. Stratton, S. F. Mahoney, J. D. Lifson, L. Margolis, et.al., Movements of HIV-virions in human cervical mucus, Biomacromolecules, 10 (2009), 2482–2488. https://doi.org/10.1021/bm900344q doi: 10.1021/bm900344q |
[23] | M. C. Strain, D. D. Richman, J. K. Wong, H. Levine, Spatiotemporal dynamics of HIV propagation, J. Theoret. Biol., 218 (2002), 85–96. https://doi.org/10.1006/jtbi.2002.3055 doi: 10.1006/jtbi.2002.3055 |
[24] | P. Wu, H. Zhao, Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity, J. Franklin Inst., 358 (2021), 5552–5587. https://doi.org/10.1016/j.jfranklin.2021.05.014 doi: 10.1016/j.jfranklin.2021.05.014 |
[25] | F. B. Wang, Y. Huang, X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312–2329. https://doi.org/10.1080/00036811.2014.955797 doi: 10.1080/00036811.2014.955797 |
[26] | D. Baleanu, M. Hasanabadi, A. M. Vaziri, A. Jajarmi, A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach, Chaos Solitons Fractals, 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078 doi: 10.1016/j.chaos.2022.113078 |
[27] | E. F. Arruda, C. M. Dias, C. V. de Magalhã, D. H. Pastore, R. C. Thomé, H. M. Yang, An optimal control approach to HIV immunology, Appl. Math., 6 (2015), 1115–1130. https://doi.org/10.4236/am.2015.66102 doi: 10.4236/am.2015.66102 |
[28] | K. O. Okosun, O. D. Makinde, I. Takaidza, Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives, Appl. Math. Model., 37 (2013), 3802–3820. https://doi.org/10.1016/j.apm.2012.08.004 doi: 10.1016/j.apm.2012.08.004 |
[29] | T. T. Yusuf, F. Benyah, Optimal strategy for controlling the spread of HIV/AIDS disease: A case study of South Africa, J. Biol. Dyn., 6 (2012), 475–494. https://doi.org/10.1080/17513758.2011.628700 doi: 10.1080/17513758.2011.628700 |
[30] | A. L. Hill, D. I. Rosenbloom, M. A. Nowak, R. F. Siliciano, Insight into treatment of HIV infection from viral dynamics models, Immunol. Rev., 285 (2018), 9–25. https://doi.org/10.1111/imr.12698 doi: 10.1111/imr.12698 |
[31] | M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A. S. Perelson, et al., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77 (2003), 5037–5038. https://doi.org/10.1128/jvi.77.8.5037-5038.2003 doi: 10.1128/jvi.77.8.5037-5038.2003 |
[32] | A. Andrade, S. L. Rosenkranz, A. R. Cillo, D. Lu, E. S. Daar, J. M. Jacobson, et al., Three distinct phases of HIV-1 RNA decay in treatment-naive patients receiving raltegravir-based antiretroviral therapy: ACTG A5248, J. Infect. Dis., 208 (2013), 884–891. https://doi.org/10.1093/infdis/jit272 doi: 10.1093/infdis/jit272 |
[33] | E. F. Cardozo, A. Andrade, J. W. Mellors, D. R. Kuritzkes, A. S. Perelson, R. M. Ribeiro, Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration, PLoS Pathog., 13 (2017), e1006478. https://doi.org/10.1371/journal.ppat.1006478 doi: 10.1371/journal.ppat.1006478 |
[34] | Y. Lou, X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568. https://doi.org/10.1007/s00285-010-0346-8 doi: 10.1007/s00285-010-0346-8 |
[35] | H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Soc., 1995. |
[36] | R. H. Martin, H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Am. Math. Soc., 321 (1990), 1–44. https://doi.org/10.2307/2001590 doi: 10.2307/2001590 |
[37] | R. B. Guenther, J. W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publications Inc., Mineola, 1996. |
[38] | M. Wang, Nonlinear Elliptic Equations, Science Public. |
[39] | J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer Science & Business Media, New York, 2012. |
[40] | J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Soc., Providence, 2010. |
[41] | W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. https://doi.org/10.1137/120872942 doi: 10.1137/120872942 |
[42] | H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/bf00173267 doi: 10.1007/bf00173267 |
[43] | H. Smith, X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theor., 47 (2001), 6169–6179. https://doi.org/10.1016/s0362-546x(01)00678-2 doi: 10.1016/s0362-546x(01)00678-2 |
[44] | P. Magal, X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. https://doi.org/10.1137/S0036141003439173 doi: 10.1137/S0036141003439173 |
[45] | D. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775–792. https://doi.org/10.1007/s002850050076 doi: 10.1007/s002850050076 |
[46] | M. Zhou, H. Xiang, Z. Li, Optimal control strategies for a reaction-diffusion epidemic system, Nonlinear Anal. Real World Appl., 46 (2019), 446–464. https://doi.org/10.1016/j.nonrwa.2018.09.023 doi: 10.1016/j.nonrwa.2018.09.023 |
[47] | J. P. Raymond, F. Tröltzsch, Second Order Sufficient Optimality Conditions For Nonlinear Parabolic Control Problems With State Constraints, Techn. Univ. Chemnitz, Fakultät Für Mathematik, 1998. |
[48] | S. Zheng, Nonlinear Evolution Equations, Chapman and Hall/CRC, 2004. |
[49] | J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971. |
[50] | S. Nakaoka, S. Iwami, K. Sato, Dynamics of HIV infection in lymphoid tissue network, J. Math. Biol., 72 (2016), 909–938. https://doi.org/10.1007/s00285-015-0940-x doi: 10.1007/s00285-015-0940-x |
[51] | G. A. Funk, V. A. Jansen, S. Bonhoeffer, T. Killingback, Spatial models of virus-immune dynamics, J. Theor. Biol., 233 (2005), 221–236. https://doi.org/10.1016/j.jtbi.2004.10.004 doi: 10.1016/j.jtbi.2004.10.004 |
[52] | P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201–215. https://doi.org/10.1016/S0025-5564(99)00055-3 doi: 10.1016/S0025-5564(99)00055-3 |